По свойству нижней грани в S можно указать последовательность (kn), сходящуюся к k. Так как kn
получаем |А(x)|
т. д-на.
Определение 5. Наименьшая из этих констант K, для которых выполняется неравенство (1), называется нормой оператора А и обозначается ||A||[4].
||А||
||А|| =
Между ограниченностью и непрерывностью линейного оператора существует тесная связь, а именно справедлива следующая теорема.
Теорема 3.
Для того, чтобы линейный оператор А действующий из Ex в Ey был ограничен, необходимо и достаточно, чтобы оператор А был непрерывен.
Необходимость:
Дано: А – ограничен;
Доказать: А – непрерывен;
Доказательство:
Используя теорему 1 достаточно доказать непрерывность А в нуле.
Дано, что ||Аx||
Докажем, что А непрерывен в нуле, для этого должно выполняться
Выберем
Непрерывность в нуле доказана, следовательно доказана непрерывность в
Достаточность:
Дано: А – непрерывен;
Доказать А – ограничен;
Доказательство:
Допустим, что А не ограничен. Это значит, что числу 1 найдется хотя бы один соответственный вектор x1 такой, что ||A x1|| > 1|| x1||.
Числу 2 найдется вектор x2, что ||A x2|| > 2|| x2|| и т.д.
Числу n найдется вектор xn, что ||A xn|| > n|| xn||.
Теперь рассмотрим последовательность векторов yn =
||yn|| =
Следовательно последовательность yn
Так как оператор А непрерывен в нуле, то Аyn
||Аyn || = ||A
Для линейных операторов ограниченность и непрерывность оператора эквивалентны.
Примеры.
1) Покажем, что норма функционала[5] F(y) =
По определению 5: ||F|| =
|
||F|| =
Таким образом, норма F(y) =
2) Найдем норму функционала, определенного на C[0, 2], где p(x)=(x-1)
F(y) =
По выше доказанному ||F|| =
§3. Обратный оператор. Спектр оператора и резольвента
Пусть
Определение 6. Оператор А называется обратимым, если для любого элемента у, принадлежащего RA, уравнение Ах=у имеет единственное решение.
Если оператор А обратим, то каждому элементу у, принадлежащему RA, можно поставить в соответствие единственный элемент х, принадлежащий DA и являющийся решением уравнения Ах=у. Оператор, осуществляющий это соответствие, называется обратным оператором к оператору А и обозначается А-1.
Теорема 4.
Для того чтобы линейный оператор
Доказательство:
Достаточность.
Пусть выполняется данное неравенство. Тогда равенство Ax=0 возможно лишь тогда, когда x – нулевой вектор. Получим 0
Докажем его ограниченность.
y=Ax.
x=A-1y, норма ||A-1y||=||x||, но ||x||