Докажем это от противного: пусть найдется
= , 2 n – собственное число, тогда найдется функция f(x) С[0, + ), чтоf(x+a) =
f(x).Применим оператор А n раз: f(x+n*a) =
nf(x), тогда f(x+na) = nf(x), у левой части предел конечен;правая часть предела не имеет, так как не имеет предела последовательность
n = = Cos( n) + iSin( n).Следовательно
= , 2 n собственным числом не является.Эти точки будут принадлежать спектру оператора А в пространстве С[0,+ ), так как спектр замкнутое множество и граница единичного круга должна принадлежать спектру оператора А в пространстве С[0, + ).
Сделаем вывод:
При | |>1 все точки регулярные;
При |
|<1 и =1 – точки спектра;При
= , 2 n – точки непрерывного спектра.Вывод:
Оператор А, действующий в пространстве непрерывных и ограниченных функций – C[ ], заданный следующим образом: Af(x) = f(x+a), где функции f(x), f(x+a)
C[ ], a R, f(x+a) – непрерывная и ограниченная функция:1. линейный;
2. непрерывный и ограниченный;
3. норма А: ||A|| = 1;
4. A-1f(x) = f(x-a);
5. Спектр оператора А:
· при |
|<1 и =1 – точки спектра;· при
= , 2 n – точки непрерывного спектра;· При |
|>1 все точки регулярные.Заключение
В ходе проделанной работы были рассмотрены основные определения теории линейных операторов: непрерывность, ограниченность, норма, спектр оператора и резольвента. Проведено исследование четыре оператора: оператор умножения на непрерывную функцию, оператор интегрирования, оператор дифференцирования, оператор сдвига. Можно сказать, что поставленные цели были достигнуты.
Список литературы
1. Колмогоров, А.Н. Элементы теории функций и функционального анализа [Текст]/ А.Н. Колмогоров, С.В. Фомин. – М.: Наука; Главная редакция физико–математической литературы, 1972.
2. Соболев, В.И. Лекции по дополнительным главам математического анализа [Текст] / В.И. Соболев. - М.: Наука, 1968.
3. Петров, В.А., Виленкин, Н.Я, Граев, М.И. Элементы функционального анализа в задачах [Текст]/ В.А. Петров, Н.Я. Виленкин, М.И. Граев под ред. О.А. Павлович. - М.: Просвещение, 1978.
4. Данфорд, Н. Линейные операторы. Общая теория [Текст]/ Н. Данфорд, Дж.Т. Шварц; под ред. А.Г. Костюченко; пер. с англ. Л.И. Головина, Б.С. Литягина. – М.: Издательство иностранной литературы, 1926.
[1] Ex и Ey - линейные многообразия, то есть если x, y
Ex , то x + y Ey , при , .Ex – область определения А;
Ey - область значения А;
[2] Равенства 1 и 2 определяются как аксиомы аддитивности и однородности;
[3]Шаром в метрическом пространстве называется совокупность элементов x пространства, удовлетворяющих условию p (xn, x0) < а.
Шар D(x0, a).
Если p (xn, x0) а, то D(x0, a) – замкнутый шар.
Если p (xn, x0) = а, то S(x0, a) – сфера.
Всякий шар метрического пространства, содержащий точку y, называется окрестностью точки y.
[4]Свойства нормы оператора.
1) Если оператор
ограничен, , то и оператор ограничен, причем .2) Если операторы
ограничены, то и оператор ограничен, причем и .[5]Линейный функционал, есть частный случай линейного оператора. Именно, линейный функционал есть линейный оператор, переводящий пространство E в числовую прямую.
[6] Резольвента – это функция комплексного переменного со значениями во множестве операторов, определенная на множестве регулярных чисел данного оператора.