ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
Спектральная теория операторов
Саранск 2009
СОДЕРЖАНИЕ
Введение………………………..………………………………………………..4
1 Линейный оператор…………………………………………………………...4
1.1 Понятие линейного оператора………………………………………...4
1.2 Линейные преобразования………………………………………….....4
1.3 Сопряжённый и самосопряжённый оператор………………………..5
2 Спектральная теория компактных операторов……………………………...7
2.1 Спектр оператора……………………………………………………...7
2.2 Понятие об ограниченном операторе………………………………...8
2.3 Понятие о компактном операторе…………………………………...13
3 Спектральная теория компактных операторов……………………………….16
3.1 Множество значений компактного оператора……………………........16
3.2 Собственное значение компактного оператора……………………..18
Заключение……………………………………………………………………...25
Список использованных источников……………………………………..…...26
Данная курсовая работа посвящена спектральной теории операторов. В отдельной главе более подробно рассматривается спектральная теория компактных операторов. Важнейшими задачами этой теории являются утверждения о приведении изучаемых операторов к так называемому диагональному виду – спектральные теоремы, утверждения о свойствах спектра и собственных значениях.
Цель данной курсовой работы – познакомить тех, кто интересуется математикой со спектральной теорией операторов, в частности, со спектральной теорией для компактных операторов.
Данная курсовая работа состоит из трёх глав:
1) Линейный оператор;
2) Спектральная теория операторов;
3) Спектральная теория компактных операторов.
В первой главе рассматривается понятия линейного оператора, линейные преобразования, сопряжённый и самосопряжённыйоператор.
Во второй главе рассматривается понятие спектра оператора, теорема для замкнутого линейного оператора, спектральный радиус,понятие об ограниченном операторе и компактных операторах, а также теорема, являющаяся важным характеристическим свойством компактных операторов.
В третьей главе рассматриваются множество значений компактного оператора, собственные значения компактного оператора. В каждой главе приводятся решённые примеры.
1 Линейный оператор
1.1 Понятие линейного оператора
Функцию, множество значений которой принадлежит полю скаляров, называют функционалом.
Вообще функция может быть определена не на всем гильбертовом пространстве, а лишь на некотором его подмножестве. Это подмножество называют областью определения функции. Множеством значений функции называют множество, в которое эта функция отображает свою область определения. Для удобства условимся обозначать область определения через D, гильбертово пространство ее содержащее, — через Н1 множество значений — через R а содержащее его пространство — через Н2.
Определение 1.1 Оператор (преобразование) L называется линейным, если его область определения D является линейным подпространством (плотным или нет) и он линеен на D
L(
x + y)= Lx + Ly (1.1). [9]Множество линейного оператора также является линейным подпространством.
1.2 Линейные преобразования
Определение 1.2 Графиком G(T) линейного преобразования Т называется подпространство в произведении подпространств Н1
Н2, образованное по правилуG(T) =
(1.2).Определение 1.3 Линейное преобразование Т называется замкнутым, если его график функции замкнут в Н3. Иначе замкнутость оператора Т можно определить так: пусть xn
D(T), xn x, Tхn у. Тогда x D(Т) и Тх = у.Отметим, что, как правило, дифференциальные операторы замкнуты. Этот факт и определяет необходимость рассмотрения класса замкнутых операторов.
Определение 1.4 Линейное преобразование Т называется ограниченным, если D = Н1 и
sup
=M< (1.3).Определение 1.5 Нормой линейного ограниченного преобразования T называется число
sup (1.4)Линейное преобразование ограничено, если оно непрерывно в начале координат. Тогда оно непрерывно в каждой точке. Ограниченное линейное преобразование, очевидно, непрерывно.
Пусть Т1, Т2 — линейные ограниченные операторы, отображающие пространство Н1 в Н2. Тогда ясно, что сумма T1 +Т2 также является линейным ограниченным оператором. Кроме того,
(1.5)В силу определения (
T)x= Тх, где элемент поля скаляров, следовательно, оператор Т ограничен, если T ограничен. Следовательно, множество всех линейных ограниченных операторов образует линейное пространство, а норма оператора является нормой на этом пространстве. Полученное таким образом линейное нормированное пространство операторов обозначается через L(H1,H2). Нетрудно показать, что пространство L(H1,H2) полно. Действительно, если {Tn} — последовательность Коши этого пространства, то для любого элемента х пространства H1 имеем (1.6).Следовательно, {Tnx} является последовательностью Коши пространства H2, ее предел обозначим через Тх. Очевидно, что оператор Т линеен и ограничен. Если n>N(e) и
, то + (1.7).1.3 Сопряжённый и самосопряжённый оператор
Определение 1.6 Пусть T — линейный ограниченный оператор из H1 в Н2 сопряженный оператор T* (определенный на Н2 и принимающий значения в Н.) определяется условием у = Т*х в том и только том случае, если существует вектор у такой, что [y,z] = [x,Tz] для любого z
H1.Определение 1.7 Пусть H1=H2=H. Оператор L c плотной областью определения, называется самосопряжённым, если L=L* [9].
2 Спектральная теория операторов
2.1 Спектр оператора
В приложениях часто возникает следующая задача: задан оператор Т, найти элемент х такой, что Тх=у, где элемент у задан. В общем случае множество решений может оказаться либо пустым, либо содержать слишком много элементов. Можно рассмотреть несколько более общую задачу: найти элемент х такой, что
х—Тх=у, где — скаляр. Важность рассмотрения этой задачи обусловлена тем, что последняя тесно связана со структурой самого оператора. Возможно, что читатель имеет представление о собственных значениях и собственных векторах матрицы. Спектральная теория операторов рассматривает вопросы, связанные с этими понятиями, но уже для более широкого класса операторов. В дальнейшем гильбертовы пространства рассматриваются над полем комплексных чисел.Определение2.1 Пусть Т — замкнутый линейный оператор, отображающий пространство Н в себя. Комплексное число
называется собственным значениемоператора Т, если существует элемент х. из Н такой, что Тх = х; при этом элемент х (предполагается, что его норма равна 1) называется собственным вектором, соответствующим . Множество всех собственных значений оператора Т образует его точечный спектр [4].Если комплексное число Xне принадлежит точечному спектру оператора Т, то, безусловно, можно определить оператор (
I– T)-1 (здесь I — тождественный оператор): х= ( I— Т) yв том и только том случае, если у= –Тх.