Первое слагаемое суммы делится на х-с, а второе на х-с не делится; поэтому вся эта сумма на х-с не может делиться. Учитывая, что частное от деления f(x) на определено однозначно, мы получаем, что
является наибольшей степенью двучлена х-с, на которую делится многочлен
Применяя эту теорему несколько раз, мы получаем, что k-кратный корень многочлена f(x) будет (k-s)-кратным в s-й производной этого многочлена и впервые не будет служить корнем для k-й производной от f(x).
Пример. Найти производную
Я составила программу для нахождения первой производной многочлена.
unit Unit1;
interface
uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Grids;
type
TForm1 = class(TForm)
Edit1: TEdit;
Label1: TLabel;
SGd1: TStringGrid;
Label2: TLabel;
Button1: TButton;
Edit2: TEdit;
Edit3: TEdit;
Label3: TLabel;
Label4: TLabel;
procedure Button1Click(Sender: TObject);
private
{ Private declarations }
public
{ Public declarations }
end;
var
Form1: TForm1;
c,i,st:integer;
k,l,s:string;
kof:array[0..100] of integer;
implementation
{$R *.dfm}
procedure TForm1.Button1Click(Sender: TObject);
begin
st:=StrToInt(Edit1.Text);
for i:=0 to st do begin
if SGd1.Cells[i,0]<>'' then
kof[st-i]:=StrToInt(SGd1.Cells[i,0])
elseMessageDlg ('Внимание! Не введены значения коэффициентов!',mtWarning,[mbOK],0);
end;
s:='f(x)=';
for i:=st downto 0 do begin
if kof[i]<>0 then begin
if(kof[i-1]<0)or(i=0) then begin
str(kof[i],l);
str(i,k);
s:=s+l+'x^'+k;
end
else begin
str(kof[i],l);
str(i,k);
s:=s+l+'x^'+k+'+';
end;
end;
kof[i]:=kof[i]*i;
end;
Edit2.Text:=s;
s:='f1(x)=';
for i:=st downto 0 do begin
if kof[i]<>0 then begin
if(kof[i-1]<0)or(i=1) then begin
str(kof[i],l);
str(i-1,k);
s:=s+l+'x^'+k;
end
else begin
str(kof[i],l);
str(i-1,k);
s:=s+l+'x^'+k+'+';
end;
end;
Edit3.Text:=s;
end;
end;
end.
Существуют методы, позволяющие узнать, обладает ли данный многочлен кратными множителями, и в случае положительного ответа дающие возможность свести изучение этого многочлена к изучению многочленов, уже не содержащих кратных множителей.
Теорема. Если
В самом деле, пусть
причем
Второе из слагаемых, стоящих в скобках, не делится на
Из данной теоремы и из указанного выше способа разыскания наибольшего общего делителя двух многочленов следует, что если дано разложение многочлена
то наибольший общий делитель многочлена
где множитель
Если дан многочлен
т.е. получим многочлен, не содержащий кратных множителей, причем всякий неприводимый множитель для
Усложняя изложенный сейчас метод, можно сразу перейти к рассмотрению нескольких многочленов без кратных множителей, причем, найдя неприводимые множители этих многочленов, мы не только найдем все неприводимые множители для
Пусть (5.2) будет разложением
а разложение (5.3) для
обозначая через