Введение
Для сложных математических моделей аналитические решения удаётся получить сравнительно редко. Поэтому среди приближённых математических методов основными методами решения задач являются численные. Эти методы позволяют добиться хорошего качественного и количественного описания исследуемого процесса или явления.
Задача Дирихле может быть сформулирована следующим образом: найти функцию, непрерывную в данной замкнутой области
, гармоническую в области и принимающую на ее границе непрерывные заданные значения.Цель данной работы рассмотреть решение задачи Дирихле для уравнения Лапласа и уравнения Пуассона методом Монте-Карло на основе метода сеток.
Применяя метод сеток для решения краевых задач, прежде всего появляется задача замены дифференциальных уравнений разностными уравнениями – заданное дифференциальное уравнение заменяется в узлах построенной сетки соответствующим конечно-разностным уравнением.
Идея метода сеток восходит еще к Эйлеру. Однако практическое использование метода наталкивалось на серьезные трудности, так как получение достаточно точного решения краевой задачи приводило к системам алгебраических уравнений, на решение которых при ручном счете требовались затраты времени. Положение резко изменилось с появлением быстродействующих электронных вычислительных машин.
Методами Монте-Карло называются численные методы решения математических задач при помощи моделирования случайных величин и статистической оценки их характеристик. В данной работе приведено два метода решения задачи Дирихле для уравнения Лапласа с использованием методом Монте-Карло, и на основании одного из них приведена программа его реализующая.
1. Метод Монте-Карло
Общепринятого определения методов Монте-Карло пока нет. Назовем методами Монте-Карло численные методы решения математических задач при помощи моделирования случайных величин и статистической оценки их характеристик. При таком определении приходится к методам Монте-Карло причислить некоторые другие методы, как, например, стохастические приближения или случайный поиск, которые по традиции рассматриваются отдельно. Однако специалисты, занимающиеся этими вопросами, нередко сами называют свои приемы методами Монте-Карло. В то же время в определении подчеркивается что:
а) речь идет о численных методах (и конкурировать они могут с классическими численными методами, а не с аналитическими методами решения задач);
б) решать методами Монте-Карло можно любые математические задачи (а не только задачи вероятностного происхождения, связанные со случайными величинами).
Официальной датой рождения методов Монте-Карло считают 1949 год, когда появилась статья под заглавием «Метод Монте-Карло». Возникновение метода связывают обычно с именами Дж. Неймана, С. Улама, Н. Метрополиса, а также Г. Кана и Э. Ферми; все они в 40-х годах работали в Лос-Аламосе (США).
Необходимо сразу же подчеркнуть, что теоретические основы методов Монте-Карло были известны значительно раньше. Более того, фактически такие методы не раз использовались для расчетов в математической статистике. Однако до появления электронных вычислительных машин (ЭВМ) методы Монте-Карло не могли стать универсальными численными методами, ибо моделирование случайных величин вручную – весьма трудоемкий процесс.
Развитию методов Монте-Карло способствовало бурное развитие ЭВМ. Алгоритмы Монте-Карло (как правило, обладающие небольшой связностью)
сравнительно легко программируются и позволяют рассчитывать многие задачи, недоступные для классических численных методов. Так как совершенствование ЭВМ продолжается, есть все основания ожидать дальнейшего развития методов Монте-Карло и дальнейшего расширения
области их применения.
Важнейший прием построения методов Монте-Карло – сведение задачи к расчету математических ожиданий. Более подробно: для того чтобы приближенно вычислить некоторую скалярную величину а, надо придумать такую случайную величину
, что ; тогда, вычислив независимых значений величины , можно считать, что .Пример. Требуется оценить объем
некоторой ограниченной пространственной фигуры .Выберем параллелепипед
, содержащий , объем которого известен. Выберем случайных точек, равномерно распределенных в , и обозначим через количество точек, попавших в . Если велико,то, очевидно,
: , откуда получаем оценку .В этом примере случайная величина
равна , если случайная точка попадает в , и равна нулю, если точка попадает в . Нетрудно проверить, что математическое ожидание , а среднее арифметическое .Легко видеть, что существует бесконечно много случайных величин
таких, что . Поэтому теория методов Монте-Карло должна дать ответы на два вопроса:1) как выбрать удобную величину
для расчета той или иной задачи;2) как находить значения
произвольной случайной величины ?Изучение этих вопросов и должно составить основное содержание практического курса методов Монте-Карло.
Многие методы основаны на расчете математических ожиданий. Существуют методы случайного поиска (кроме простейшего) и стохастических приближений.
Среди методов Монте-Карло можно выделить методы, в которых полностью воспроизводится модель рассчитываемого процесса. Такие методы иногда называют «физическими», хотя автору представляется более удачным другое название этих методов — имитационные. Имитация естественных процессов широко используется в самых различных областях науки, техники, экономики. Однако приемы имитации в каждой области свои, и подробно излагать их более целесообразно в специальных руководствах, а не в общем курсе методов Монте-Карло.
2. Задаче Дирихле для уравнения Лапласа
2.1 Основные сведения о задаче Дирихле для уравнения Лапласа
Определение. Функция
, имеющая непрерывные частные второго порядка в области и удовлетворяющая внутри уравнению Лапласа, называется гармонической функцией: .Простейшим примером гармонической функции двух переменных является функция вида
, где (основное решение уравнения Лапласа).Задача Дирихле в иных терминах может быть сформулирована следующим образом: найти функцию, непрерывную в данной замкнутой области
, гармоническую в области и принимающую на ее границе непрерывные заданные значения.Если
, то задача Дирихле удовлетворяет уравнению Пуассона Единственность решения задачи Дирихле и непрерывная запись ее от краевых условий (корректность краевой задачи) вытекают из следующих гармонических функций.Свойcтво1 (принцип максимума). Гармоническая в ограниченной области функция, непрерывная в замкнутой области
, не может принимать внутри этой области значений больших, чем максимум ее значений на границе непрерывные заданные значения.