5) Нормальный закон распределения остатков. Выполнение этой предпосылки проверяем с помощью R/S-критерия, определяемого по формуле
,где emax=6,32; emin=(–5,19) — наибольший и наименьший остатки соответственно (определялись с помощью встроенных функций «МАКС» и «МИН»);
— стандартное отклонение ряда остатков (определено с помощью встроенной функции «СТАНДОТКЛОН») (см. прил. 1).Критические границы R/S-критерия для числа наблюдений n=10 и уровня значимости a=0,05 имеют значения: (R/S)1=2,67 и (R/S)2=3,69.
Так как расчетное значение R/S-критерия попадает в интервал между критическими границами, то статистическая гипотеза о нормальном законе распределения остатков не отклоняется на уровне значимости a=0,05.
Проведенная проверка показала, что выполняются все пять предпосылок обычного метода наименьших квадратов. Это свидетельствует об адекватности регрессионной модели исследуемому экономическому явлению.
4. Проверим статистическую значимость коэффициентовb0 и b1 уравнения регрессии. Табличное значение t-критерия Стьюдента для уровня значимости a=0,05 и числа степеней свободы остатка линейной парной регрессии
составляет tтаб=2,306.t-статистики коэффициентов
,были определены при проведении регрессионного анализа в EXCEL и имеют следующие значения: tb0»3,202; tb1»7,288 (см. прил. 1). Анализ этих значений показывает, что по абсолютной величине все они превышают табличное значение t-критерия Стьюдента. Это свидетельствует о статистической значимости обоих коэффициентов. На то же самое обстоятельство указывают и вероятности случайного формирования коэффициентов b0 и b1, которые ниже допустимого уровня значимости a=0,05 (см. «P‑Значение»).
Статистическая значимость углового коэффициента b1 дает основание говорить о существенном (значимом) влиянии изменения объема капиталовложений X на изменение объема выпускаемой продукции Y.
5. Коэффициент детерминацииR2 линейной модели также был определен при проведении регрессионного анализа в EXCEL:
(см. «Регрессионную статистику» в прил. 1).
ЗначениеR2 показывает, что линейная модель объясняет 86,9 % вариации объема выпускаемой продукции Y.
F-статистика линейной модели имеет значение
(см. «Дисперсионный анализ» в прил. 1).
Табличное значениеF-критерия Фишера для уровня значимости a=0,05 и чисел степеней свободы числителя (регрессии)
и знаменателя (остатка) составляетFтаб=5,32. Так как F-статистика превышает табличное значениеF-критерия Фишера, то это свидетельствует о статистической значимости уравнения регрессии в целом. На этот же факт указывает и то, что вероятность случайного формирования уравнения регрессии в том виде, в каком оно получено, составляет 8,49×10-5 (см. «Значимость F» в «Дисперсионном анализе» прил. 1), что ниже допустимого уровня значимости a=0,05.Среднюю относительную ошибку аппроксимации определяем по приближенной формуле
,где
млн. руб. — средний объем выпускаемой продукции, определенный с помощью встроенной функции «СРЗНАЧ» (см. «Исходные данные» в прил. 1).Значение Еотн показывает, что предсказанные уравнением регрессии значения объема выпускаемой продукции Y отличаются от фактических значений в среднем на 7,1 %. Линейная модель имеет хорошую точность.
По результатам проверок, проведенных в пунктах 3 — 5, можно сделать вывод о достаточно хорошем качестве линейной модели и возможности ее использования для целей анализа и прогнозирования объема выпускаемой продукции.
6. Спрогнозируем объем выпускаемой продукции Y, если прогнозное значение объема капиталовложений X составит 80 % от своего максимального значения в исходных данных:
- максимальное значение X—xmax=59 млн. руб. (см. «Исходные данные» в прил. 1);
- прогнозное значение X—
млн. руб.Среднее прогнозируемое значение объема выпускаемой продукции (точечный прогноз) равно
млн. руб.Стандартная ошибка прогноза фактического значенияобъема выпускаемой продукцииy0рассчитывается по формуле
млн. руб.,где
млн. руб. — средний объем капиталовложений; млн. руб. — стандартное отклонение объема капиталовложений (определены с помощью встроенных функций «СРЗНАЧ» и «СТАНДОТКЛОН») (см. «Исходные данные» в прил. 1).Интервальный прогноз фактического значения объема выпускаемой продукцииy0 с надежностью (доверительной вероятностью) g=0,9 (уровень значимости a=0,1) имеет вид:
млн. руб.,гдеtтаб=1,860 — табличное значение t-критерия Стьюдента при уровне значимости a=0,1 и числе степеней свободы
.Таким образом, объем выпускаемой продукции Yс вероятностью 90 % будет находиться в интервале от 43,2 до 58,8 млн. руб.
7. График, на котором изображены фактические и предсказанные уравнением регрессии значения Yстроим с помощью диаграммы EXCEL (меню «Вставка» ® «Диаграмма…» ® «Точечная»). Далее строим линию линейного тренда (меню «Диаграмма» ® «Добавить линию тренда…» ® «Линейная»), и устанавливаем вывод на диаграмме уравнения регрессии и коэффициента детерминации R2:
Точки точечного и интервального прогнозов наносим на график вручную (прил. 3).
8. Логарифмическую, степенную и показательную модели также строим с помощью диаграммы EXCEL (меню «Вставка» ® «Диаграмма…» ® «Точечная»). Далее последовательно строим соответствующие линии тренда (меню «Диаграмма» ® «Добавить линию тренда…»), и устанавливаем вывод на диаграмме уравнения регрессии и коэффициента детерминации R2:
Графики линий регрессии, уравнения регрессии и значения R2 приведены в прил. 4. Рассмотрим последовательно каждую модель.
1) Логарифмическая модель:
.Значение параметра b1=29,9 показывает, что при увеличении объема капиталовложений X на 1 % объем выпускаемой продукцииY возрастает в среднем на
млн. руб.Коэффициент детерминации R2»0,898 показывает, что логарифмическая модель объясняет 89,8 % вариации объема выпускаемой продукции Y.
F-статистика Фишера логарифмической модели определяется через коэффициент детерминации R2 по формуле
.Табличное значениеF-критерия Фишера одинаково как для линейной, так и для всех нелинейных моделей, которые здесь строятся (Fтаб=5,32). Так как F-статистика превышает табличное значениеF-критерия, то это свидетельствует о статистической значимости уравнения логарифмической регрессии.
Стандартная ошибка логарифмической регрессии также рассчитывается через коэффициент детерминации R2 по формуле
млн. руб.,где
млн. руб. — стандартное отклонение объема выпускаемой продукции, определенное с помощью встроенной функции «СТАНДОТКЛОН» (см. «Исходные данные» в прил. 1).Среднюю относительную ошибку аппроксимации определяем по приближенной формуле
.