Смекни!
smekni.com

Эконометрика 6 (стр. 2 из 4)

5) Нормальный закон распределения остатков. Выполнение этой предпосылки проверяем с помощью R/S-критерия, определяемого по формуле

,

где emax=6,32; emin=(–5,19) — наибольший и наименьший остатки соответственно (определялись с помощью встроенных функций «МАКС» и «МИН»);

— стандартное отклонение ряда остатков (определено с помощью встроенной функции «СТАНДОТКЛОН») (см. прил. 1).

Критические границы R/S-критерия для числа наблюдений n=10 и уровня значимости a=0,05 имеют значения: (R/S)1=2,67 и (R/S)2=3,69.

Так как расчетное значение R/S-критерия попадает в интервал между критическими границами, то статистическая гипотеза о нормальном законе распределения остатков не отклоняется на уровне значимости a=0,05.

Проведенная проверка показала, что выполняются все пять предпосылок обычного метода наименьших квадратов. Это свидетельствует об адекватности регрессионной модели исследуемому экономическому явлению.

4. Проверим статистическую значимость коэффициентовb0 и b1 уравнения регрессии. Табличное значение t-критерия Стьюдента для уровня значимости a=0,05 и числа степеней свободы остатка линейной парной регрессии

составляет tтаб=2,306.

t-статистики коэффициентов

,

были определены при проведении регрессионного анализа в EXCEL и имеют следующие значения: tb0»3,202; tb1»7,288 (см. прил. 1). Анализ этих значений показывает, что по абсолютной величине все они превышают табличное значение t-критерия Стьюдента. Это свидетельствует о статистической значимости обоих коэффициентов. На то же самое обстоятельство указывают и вероятности случайного формирования коэффициентов b0 и b1, которые ниже допустимого уровня значимости a=0,05 (см. «P‑Значение»).

Статистическая значимость углового коэффициента b1 дает основание говорить о существенном (значимом) влиянии изменения объема капиталовложений X на изменение объема выпускаемой продукции Y.

5. Коэффициент детерминацииR2 линейной модели также был определен при проведении регрессионного анализа в EXCEL:

(см. «Регрессионную статистику» в прил. 1).

ЗначениеR2 показывает, что линейная модель объясняет 86,9 % вариации объема выпускаемой продукции Y.

F-статистика линейной модели имеет значение

(см. «Дисперсионный анализ» в прил. 1).

Табличное значениеF-критерия Фишера для уровня значимости a=0,05 и чисел степеней свободы числителя (регрессии)

и знаменателя (остатка)
составляетFтаб=5,32. Так как F-статистика превышает табличное значениеF-критерия Фишера, то это свидетельствует о статистической значимости уравнения регрессии в целом. На этот же факт указывает и то, что вероятность случайного формирования уравнения регрессии в том виде, в каком оно получено, составляет 8,49×10-5 (см. «Значимость F» в «Дисперсионном анализе» прил. 1), что ниже допустимого уровня значимости a=0,05.

Среднюю относительную ошибку аппроксимации определяем по приближенной формуле

,

где

млн. руб. — средний объем выпускаемой продукции, определенный с помощью встроенной функции «СРЗНАЧ» (см. «Исходные данные» в прил. 1).

Значение Еотн показывает, что предсказанные уравнением регрессии значения объема выпускаемой продукции Y отличаются от фактических значений в среднем на 7,1 %. Линейная модель имеет хорошую точность.

По результатам проверок, проведенных в пунктах 3 — 5, можно сделать вывод о достаточно хорошем качестве линейной модели и возможности ее использования для целей анализа и прогнозирования объема выпускаемой продукции.

6. Спрогнозируем объем выпускаемой продукции Y, если прогнозное значение объема капиталовложений X составит 80 % от своего максимального значения в исходных данных:

- максимальное значение Xxmax=59 млн. руб. (см. «Исходные данные» в прил. 1);

- прогнозное значение X

млн. руб.

Среднее прогнозируемое значение объема выпускаемой продукции (точечный прогноз) равно

млн. руб.

Стандартная ошибка прогноза фактического значенияобъема выпускаемой продукцииy0рассчитывается по формуле

млн. руб.,

где

млн. руб. — средний объем капиталовложений;
млн. руб. — стандартное отклонение объема капиталовложений (определены с помощью встроенных функций «СРЗНАЧ» и «СТАНДОТКЛОН») (см. «Исходные данные» в прил. 1).

Интервальный прогноз фактического значения объема выпускаемой продукцииy0 с надежностью (доверительной вероятностью) g=0,9 (уровень значимости a=0,1) имеет вид:

млн. руб.,

гдеtтаб=1,860 — табличное значение t-критерия Стьюдента при уровне значимости a=0,1 и числе степеней свободы

.

Таким образом, объем выпускаемой продукции Yс вероятностью 90 % будет находиться в интервале от 43,2 до 58,8 млн. руб.

7. График, на котором изображены фактические и предсказанные уравнением регрессии значения Yстроим с помощью диаграммы EXCEL (меню «Вставка» ® «Диаграмма…» ® «Точечная»). Далее строим линию линейного тренда (меню «Диаграмма» ® «Добавить линию тренда…» ® «Линейная»), и устанавливаем вывод на диаграмме уравнения регрессии и коэффициента детерминации R2:

Точки точечного и интервального прогнозов наносим на график вручную (прил. 3).

8. Логарифмическую, степенную и показательную модели также строим с помощью диаграммы EXCEL (меню «Вставка» ® «Диаграмма…» ® «Точечная»). Далее последовательно строим соответствующие линии тренда (меню «Диаграмма» ® «Добавить линию тренда…»), и устанавливаем вывод на диаграмме уравнения регрессии и коэффициента детерминации R2:

Графики линий регрессии, уравнения регрессии и значения R2 приведены в прил. 4. Рассмотрим последовательно каждую модель.

1) Логарифмическая модель:

.

Значение параметра b1=29,9 показывает, что при увеличении объема капиталовложений X на 1 % объем выпускаемой продукцииY возрастает в среднем на

млн. руб.

Коэффициент детерминации R2»0,898 показывает, что логарифмическая модель объясняет 89,8 % вариации объема выпускаемой продукции Y.

F-статистика Фишера логарифмической модели определяется через коэффициент детерминации R2 по формуле

.

Табличное значениеF-критерия Фишера одинаково как для линейной, так и для всех нелинейных моделей, которые здесь строятся (Fтаб=5,32). Так как F-статистика превышает табличное значениеF-критерия, то это свидетельствует о статистической значимости уравнения логарифмической регрессии.

Стандартная ошибка логарифмической регрессии также рассчитывается через коэффициент детерминации R2 по формуле

млн. руб.,

где

млн. руб. — стандартное отклонение объема выпускаемой продукции, определенное с помощью встроенной функции «СТАНДОТКЛОН» (см. «Исходные данные» в прил. 1).

Среднюю относительную ошибку аппроксимации определяем по приближенной формуле

.