Смекни!
smekni.com

Эконометрическое моделирование рынка вторичных трехкомнатных квартир металлургического района г. (стр. 6 из 7)

Это может свидетельствовать о соответствии полученных моделей данным исходной выборки.

Значения R2adj и R2 максимальны у линейной модели.

5.2.4 Критерий минимума стандартной ошибки регрессии.

Таблица 6.2 Стандартные ошибки регрессии.

Модель

Стандартная ошибка

линейная 178.16
логарифмическая 0.13
полулогарифмическая 0.13

Основываясь на перечисленных критериях, можно сделать вывод, что наилучшими характеристиками обладает линейная модель. Она и будет являться конечным результатом данной курсовой работы.

5.3 Проверка качества модели по контрольной выборке.

Дополнительно к уже имеющимся исходным данным была сделана статистическая выборка. Она содержит 32 данное, которые расположены в Приложении 3.

Эти данные подставляются в выбранную логарифмическую модель. Прогнозные цены на квартиры, полученные в этой модели, сравниваются с уже имеющимися статистическими данными, и делается вывод о качестве прогноза логарифмической модели.

Для определения ошибки прогноза используется формула:

Т.о. ошибка прогноза продажной цены квартиры в построенной логарифмической модели составляет 6.42 %.

6. Интерпретация окончательной модели

В ходе написания курсовой работы было проведено эконометрическое моделирование рынка вторичных трёхкомнатных квартир Металлургического района г. Челябинска.

С помощью эконометрического анализа были выделены наиболее значимые факторы, влияющие на цену предложения квартиры на рынке

Результатом моделирования стало построение трёх регрессионных уравнений – линейного (модель 1.3), полулогарифмического (модель 2.2) и логарифмического (модель 3.2). При помощи ряда тестов модели были скорректированы, и среди них выбрана одна, наиболее точная, - модель 1.3, которая имеет следующий вид:

Yt=322.76+102.24*X2t+23.57*X3t/X4t+4.38*(X5t+X6t)*Х20+417.43*X12t+

(118.53) (31.49) (10.12) (2.12) (132.78)

+528.82*X13t+2211.76*X15t+152.11*X16t, t=1…121

(129.84) (417.33) (36.70)

.

Рассмотрим экономический смысл значимых регрессоров и их влияние на цену предложения квартиры.

1. Х2 - удобство положения увеличивает цену на 102.24 тыс. руб.

Является одним из наиболее значимых факторов, что в точности соответствует объективным критериям рынка жилья.

Действительно, квартира, имеющая более удобное и выгодное расположение, всегда имеет большую стоимость, чем аналогичная квартира, не обладающая эти качеством.

2. (Х5+Х6)*Х20 – при увеличении общей площади квартиры (не относящейся к 121, полнометражной и элитной сериям) на 1 кв. метр, её цена предложения возрастает на 4.38 тыс. руб.

С точки зрения экономического смысла метраж квартиры является главным фактором формирования её стоимости. Но цена 1 квадратного метра жилой площади, найденная в модели (4.38 тыс. руб.), весьма занижена по сравнению с реальной. Тем не менее, это не противоречит логике.

Низкая цена 1 кв. метра объясняется тем, что метраж здесь – простая количественная оценка, не учитывающая важных особенностей квартиры, например, удобства её расположения.

К тому же, модель содержит константу С=322.76, которая не зависит от различных характеристик квартиры и всегда включается в её стоимость. Величину константы можно интерпретировать как основу продажной цены любой трёхкомнатной квартиры. Сам факт того, что квартира трёхкомнатная, дает представление об её возможных размерах. Метраж конкретизирует эти представления. Поэтому С можно рассматривать как характеристику размера квартиры. А т.к. значение константы достаточно велико (322.76), это объясняет малую стоимость 1 кв. метра жилой площади в полученном уравнении.

Введенный регрессор Х20 исключает влияние фактора метражности в таких квартирных сериях, как 121, полнометражная и элитная. Принадлежность квартиры к этим сериям уже определяет ряд её важнейших свойств, в том числе фиксирует метраж (чаще всего у квартир одной серии значение жилой площади одинаково), определяет основную часть стоимости квартиры.

Поэтому непосредственный фактор метража (Х5+Х6) учитывается только при определении цены на квартиры серий, отличных от перечисленных.

Т.о. в формировании цены на одни квартиры фактор метражности может иметь определяющее значение (при этом коэффициент максимален). В других же случаях метражность не является единственным ведущим фактором и основная доля цены определяется иными факторами.

3. Х12 – принадлежность квартиры к 121 серии увеличивает её цену на 417.43 тыс. руб.

Это объясняется тем, что квартиры указанной серии располагаются в домах-новостройках, обладающих удачной планировкой, раздельным санузлом, лифтом, мусоропроводом, большими лоджиями, встроенным отоплением и прочими удобствами. К тому же, этот фактор определяет часть стоимости квартиры, обусловленную её метражом.

4. Х13 – полнометражная серия квартиры увеличивает её цену на 528.82 тыс. руб.

Квартиры этой серии имеют такие положительные характеристики как высокие потолки, удобство планировки и большая площадь. К тому же фактор полнометражности квартиры берет на себя нагрузку по части стоимости, обусловленной метражом.

5. Х15 – элитная серия квартиры имеет самую большую значимость среди коэффициентов полученной модели. Принадлежность квартиры к элитному типу жилья увеличивает её продажную стоимость на 2211.76 тыс. руб.

Это связано с тем, что элитные дома наиболее благоустроенны, комфортабельны и являются самыми новыми. Большинство элитных квартир относится к рынку первичного жилья, но и на вторичном рынке они постепенно появляются. Их число невелико по сравнению с давно построенными домами, но они имеют ряд особенностей, существенно влияющими на облик рынка вторичного жилья Металлургического района, и, следовательно, на его построенную модель.

Стоимость 1 кв. метра элитного жилья существенно выше стоимости 1 кв. метра квартиры другой серии. К тому же, квартиры этой серии обладают очень большой площадью, стоимость которой и отражает полученный коэффициент.

6. Х16 – каждый балкон увеличивает цену продажи квартиры на 152.11 тыс. руб.

Несомненно, этот показатель положительно влияет на стоимость квартиры. Но с точки зрения объективного состояния рынка жилья, его значение сильно завышено, т.к. стоимость 1 кв. метра балкона не может быть больше стоимости 1 кв. метра жилой площади.

Тем не менее, коэффициент значим и включается в модель.

7. Х3/Х4 – увеличение соотношения этажности дома и этажа квартиры на единицу увеличивает цену на 23.57 тыс. руб.

Построенная модель показывает, что цена квартиры линейно зависит от регрессора Х3/Х4. Это означает, что с уменьшением этажа квартиры её цена увеличивается, т.е. самые дорогие квартиры располагаются на начальных этажах. Т.о. наибольшую цену продажи имеют квартиры первого этажа, наименьшую – последнего.

Этот вывод противоречит распространенному мнению, что наименьшую стоимость имеют квартиры первого и последнего этажей дома, а наибольшую – квартиры, занимающие средние этажи. Согласно этому соображению, график зависимости цены квартиры от соотношения этажности дома и этажа квартиры (Х3/Х4) должен иметь следующий схематичный вид:

Рис. 7.1 Вид графика квадратичной зависимости цены от соотношения этажности дома и этажа квартиры.

Здесь величина Х3/Х4 изменяется от 1 до 16, т.к. 16 - это максимальная величина этажности, встречающаяся в анализируемой статистической выборке.

Т.о. зависимость цены квартиры от фактора Х3/Х4 должна быть квадратичной, а коэффициент при этом регрессоре – отрицательным.

Чтобы проверить эту гипотезу, строится новая модель 1.4. Она получается с помощью замены в модели 1.3 регрессора Х3/Х4 на регрессор (Х3/Х4)^2.

Таблица 7.1 Результаты оценки параметров модели 1.4.

Переменная

Оценка коэффициента

Стандартная ошибка

t-статистика

Значимость

C

345.8641

115.7857

2.987104

0.0035

X2

104.4528

31.38697

3.327904

0.0012

(X3/X4)^2

2.110683

1.174498

1.797093

0.0750

(X5+X6)*X20

4.831248

2.059172

2.346210

0.0207

X12

446.2902

129.6431

3.442452

0.0008

X13

551.8871

126.5388

4.361405

0.0000

X15

2251.927

418.7795

5.377358

0.0000

X16

141.1959

35.51152

3.976059

0.0001

R-squared

0.783926

F-statistic

58.56716

Adjusted R-squared

0.770541

Prob(F-statistic)

0.000000

S.E. of regression

180.0320

Для сравнения качества моделей 1.3 и 1.4 ниже приведена аналогичная таблица для исходной модели 1.3.