Это может свидетельствовать о соответствии полученных моделей данным исходной выборки.
Значения R2adj и R2 максимальны у линейной модели.
5.2.4 Критерий минимума стандартной ошибки регрессии.
Таблица 6.2 Стандартные ошибки регрессии.
Модель | Стандартная ошибка |
линейная | 178.16 |
логарифмическая | 0.13 |
полулогарифмическая | 0.13 |
Основываясь на перечисленных критериях, можно сделать вывод, что наилучшими характеристиками обладает линейная модель. Она и будет являться конечным результатом данной курсовой работы.
5.3 Проверка качества модели по контрольной выборке.
Дополнительно к уже имеющимся исходным данным была сделана статистическая выборка. Она содержит 32 данное, которые расположены в Приложении 3.
Эти данные подставляются в выбранную логарифмическую модель. Прогнозные цены на квартиры, полученные в этой модели, сравниваются с уже имеющимися статистическими данными, и делается вывод о качестве прогноза логарифмической модели.
Для определения ошибки прогноза используется формула:
Т.о. ошибка прогноза продажной цены квартиры в построенной логарифмической модели составляет 6.42 %.
6. Интерпретация окончательной модели
В ходе написания курсовой работы было проведено эконометрическое моделирование рынка вторичных трёхкомнатных квартир Металлургического района г. Челябинска.
С помощью эконометрического анализа были выделены наиболее значимые факторы, влияющие на цену предложения квартиры на рынке
Результатом моделирования стало построение трёх регрессионных уравнений – линейного (модель 1.3), полулогарифмического (модель 2.2) и логарифмического (модель 3.2). При помощи ряда тестов модели были скорректированы, и среди них выбрана одна, наиболее точная, - модель 1.3, которая имеет следующий вид:
Yt=322.76+102.24*X2t+23.57*X3t/X4t+4.38*(X5t+X6t)*Х20+417.43*X12t+
(118.53) (31.49) (10.12) (2.12) (132.78)
+528.82*X13t+2211.76*X15t+152.11*X16t, t=1…121
(129.84) (417.33) (36.70)
.
Рассмотрим экономический смысл значимых регрессоров и их влияние на цену предложения квартиры.
1. Х2 - удобство положения увеличивает цену на 102.24 тыс. руб.
Является одним из наиболее значимых факторов, что в точности соответствует объективным критериям рынка жилья.
Действительно, квартира, имеющая более удобное и выгодное расположение, всегда имеет большую стоимость, чем аналогичная квартира, не обладающая эти качеством.
2. (Х5+Х6)*Х20 – при увеличении общей площади квартиры (не относящейся к 121, полнометражной и элитной сериям) на 1 кв. метр, её цена предложения возрастает на 4.38 тыс. руб.
С точки зрения экономического смысла метраж квартиры является главным фактором формирования её стоимости. Но цена 1 квадратного метра жилой площади, найденная в модели (4.38 тыс. руб.), весьма занижена по сравнению с реальной. Тем не менее, это не противоречит логике.
Низкая цена 1 кв. метра объясняется тем, что метраж здесь – простая количественная оценка, не учитывающая важных особенностей квартиры, например, удобства её расположения.
К тому же, модель содержит константу С=322.76, которая не зависит от различных характеристик квартиры и всегда включается в её стоимость. Величину константы можно интерпретировать как основу продажной цены любой трёхкомнатной квартиры. Сам факт того, что квартира трёхкомнатная, дает представление об её возможных размерах. Метраж конкретизирует эти представления. Поэтому С можно рассматривать как характеристику размера квартиры. А т.к. значение константы достаточно велико (322.76), это объясняет малую стоимость 1 кв. метра жилой площади в полученном уравнении.
Введенный регрессор Х20 исключает влияние фактора метражности в таких квартирных сериях, как 121, полнометражная и элитная. Принадлежность квартиры к этим сериям уже определяет ряд её важнейших свойств, в том числе фиксирует метраж (чаще всего у квартир одной серии значение жилой площади одинаково), определяет основную часть стоимости квартиры.
Поэтому непосредственный фактор метража (Х5+Х6) учитывается только при определении цены на квартиры серий, отличных от перечисленных.
Т.о. в формировании цены на одни квартиры фактор метражности может иметь определяющее значение (при этом коэффициент максимален). В других же случаях метражность не является единственным ведущим фактором и основная доля цены определяется иными факторами.
3. Х12 – принадлежность квартиры к 121 серии увеличивает её цену на 417.43 тыс. руб.
Это объясняется тем, что квартиры указанной серии располагаются в домах-новостройках, обладающих удачной планировкой, раздельным санузлом, лифтом, мусоропроводом, большими лоджиями, встроенным отоплением и прочими удобствами. К тому же, этот фактор определяет часть стоимости квартиры, обусловленную её метражом.
4. Х13 – полнометражная серия квартиры увеличивает её цену на 528.82 тыс. руб.
Квартиры этой серии имеют такие положительные характеристики как высокие потолки, удобство планировки и большая площадь. К тому же фактор полнометражности квартиры берет на себя нагрузку по части стоимости, обусловленной метражом.
5. Х15 – элитная серия квартиры имеет самую большую значимость среди коэффициентов полученной модели. Принадлежность квартиры к элитному типу жилья увеличивает её продажную стоимость на 2211.76 тыс. руб.
Это связано с тем, что элитные дома наиболее благоустроенны, комфортабельны и являются самыми новыми. Большинство элитных квартир относится к рынку первичного жилья, но и на вторичном рынке они постепенно появляются. Их число невелико по сравнению с давно построенными домами, но они имеют ряд особенностей, существенно влияющими на облик рынка вторичного жилья Металлургического района, и, следовательно, на его построенную модель.
Стоимость 1 кв. метра элитного жилья существенно выше стоимости 1 кв. метра квартиры другой серии. К тому же, квартиры этой серии обладают очень большой площадью, стоимость которой и отражает полученный коэффициент.
6. Х16 – каждый балкон увеличивает цену продажи квартиры на 152.11 тыс. руб.
Несомненно, этот показатель положительно влияет на стоимость квартиры. Но с точки зрения объективного состояния рынка жилья, его значение сильно завышено, т.к. стоимость 1 кв. метра балкона не может быть больше стоимости 1 кв. метра жилой площади.
Тем не менее, коэффициент значим и включается в модель.
7. Х3/Х4 – увеличение соотношения этажности дома и этажа квартиры на единицу увеличивает цену на 23.57 тыс. руб.
Построенная модель показывает, что цена квартиры линейно зависит от регрессора Х3/Х4. Это означает, что с уменьшением этажа квартиры её цена увеличивается, т.е. самые дорогие квартиры располагаются на начальных этажах. Т.о. наибольшую цену продажи имеют квартиры первого этажа, наименьшую – последнего.
Этот вывод противоречит распространенному мнению, что наименьшую стоимость имеют квартиры первого и последнего этажей дома, а наибольшую – квартиры, занимающие средние этажи. Согласно этому соображению, график зависимости цены квартиры от соотношения этажности дома и этажа квартиры (Х3/Х4) должен иметь следующий схематичный вид:
Рис. 7.1 Вид графика квадратичной зависимости цены от соотношения этажности дома и этажа квартиры.
Здесь величина Х3/Х4 изменяется от 1 до 16, т.к. 16 - это максимальная величина этажности, встречающаяся в анализируемой статистической выборке.
Т.о. зависимость цены квартиры от фактора Х3/Х4 должна быть квадратичной, а коэффициент при этом регрессоре – отрицательным.
Чтобы проверить эту гипотезу, строится новая модель 1.4. Она получается с помощью замены в модели 1.3 регрессора Х3/Х4 на регрессор (Х3/Х4)^2.
Таблица 7.1 Результаты оценки параметров модели 1.4.
Переменная | Оценка коэффициента | Стандартная ошибка | t-статистика | Значимость |
C | 345.8641 | 115.7857 | 2.987104 | 0.0035 |
X2 | 104.4528 | 31.38697 | 3.327904 | 0.0012 |
(X3/X4)^2 | 2.110683 | 1.174498 | 1.797093 | 0.0750 |
(X5+X6)*X20 | 4.831248 | 2.059172 | 2.346210 | 0.0207 |
X12 | 446.2902 | 129.6431 | 3.442452 | 0.0008 |
X13 | 551.8871 | 126.5388 | 4.361405 | 0.0000 |
X15 | 2251.927 | 418.7795 | 5.377358 | 0.0000 |
X16 | 141.1959 | 35.51152 | 3.976059 | 0.0001 |
R-squared | 0.783926 | F-statistic | 58.56716 | |
Adjusted R-squared | 0.770541 | Prob(F-statistic) | 0.000000 | |
S.E. of regression | 180.0320 |
Для сравнения качества моделей 1.3 и 1.4 ниже приведена аналогичная таблица для исходной модели 1.3.