Смекни!
smekni.com

Использование дифференциальных уравнений в частных производных для моделирования реальных процес (стр. 3 из 7)

Граничные условия дают:

Х (0) = С1 + С2 = 0;

т. е.

Но в рассматриваемом случае

– действительно и положительно, так что
. Поэтому

С1 =0, С2 = 0

и, следовательно,

Х (х)

0.

2. При

= 0 также не существует нетривиальных решений. Действительно, в этом случае общее решение уравнения (15) имеет вид

Х (х) = С1х + С2.

Граничные условия дают:

т. е. С1 = 0 и С2 = 0 и, следовательно,

Х (х)

0.

3. При

› 0 общее решение уравнения может быть записано в виде

Граничные условия дают:

Если Х(х) не равно тождественно нулю, то D2

0, поэтому

(19)

или

где n- любое целое число. Следовательно, нетривиальные решения задачи (18) возможны лишь при значениях

Этим собственным значениям соответствуют собственные функции

где Dn – произвольная постоянная.

Итак, только при значениях

, равных

(20)

существуют нетривиальные решения задачи (11)

(21)

определяемые с точностью до произвольного множителя, который мы положили равным единице. Этим же значениям

n соответствуют решения уравнения (9)

(22)

где An и Bn – произвольные постоянные.

Возвращаясь к задаче (1), (9), (10), заключаем, что функции

(23)

являются частными решениями уравнения (1), удовлетворяющими граничным условиям (11) и представимыми в виде произведения (12) двух функций, одна из которых зависит только от х, другая – от t. Эти решения могут удовлетворить начальным условиям (10) нашей исходной задачи только для частных случаев начальных функций j(x) и y(x).

Обратимся к решению задачи (1), (9), (10) в общем случае. В силу линейности и однородности уравнения (1) сумма частных решений

(24)

также удовлетворяет этому уравнению и граничным условиям (9). Начальные условия позволяют определить An и Bn. Потребуем, чтобы функция (24) удовлетворяла условиям (10)

(25)

Из теории рядов Фурье известно, что произвольная кусочно-непрерывная и кусочно-дифференцируемая функция f(x), заданная в промежутке

, разлагается в ряд Фурье

(26)

где

(27)

Если функции j(x) и y(x) удовлетворяют условиям разложения в ряд Фурье, то

(28)

(29)

Сравнение этих рядов с формулами (25) показывает, что для выполнения начальных условий надо положить

(30)

чем полностью определяется функция (24), дающая решение исследуемой задачи.

Итак, мы доказали, что ряд (24), где коэффициенты An и Bn определены по формуле (30), если он допускает двукратное почленное дифференцирование, представляет функцию u (x, t), которая является решением уравнения (1) и удовлетворяет граничным и начальным условиям (9) и (10).

Замечание. Решая рассмотренную задачу для волнового уравнения другим методом, можно доказать, что ряд (24) представляет решение и в том случае, когда он не допускает почленного дифференцирования. При этом функция

должна быть дважды дифференцируемой, а
- один раз дифференцируемой.

Глава 2. УРАВНЕНИЯ ПАРАБОЛИЧЕСКОГО ТИПА

§2.1. Задачи, приводящие к уравнениям гиперболического типа.

2.1.1. Уравнение распространения тепла в стержне.

Рассмотрим однородный стержень длины

. Будем предполагать, что боковая поверхность стержня теплонепроницаема и что во всех точках поперечного сечения стержня температура одинакова. Изучим процесс распространения тепла в стержне.

Расположим ось Ох так, что один конец стержня будет совпадать с точкой х = 0, а другой – с точкой х =

.

Рис. 2.1.

Пусть u (x, t) – температура в сечении стержня с абсциссой х в момент t. Опытным путем установлено, что скорость распространения тепла, т. е. количество тепла, протекающего через сечение с абсциссой х за единицу времени, определяется формулой

(1)

где S – площадь сечения рассматриваемого стержня, k – коэффициент теплопроводности.

Рассмотрим элемент стержня, заключенный между сечениями с абсциссами х1 и х22 – х1 =

х). Количество тепла, прошедшего через сечение с абсциссой х1 за время
t, будет равно

(2)

то же самое с абсциссой х2:

(3)

Приток

Q1 -
Q2 в элемент стержня за время
t будет равняться:

(4)

Этот приток тепла за время

t затратился на повышение температуры элемента стержня на величину
u:

или

(5)

где с – теплоемкость вещества стержня,

– плотность вещества стержня (
xS – масса элемента стержня).

Приравнивая выражения (4) и (5) одного и того же количества тепла

, получим:

Это и есть уравнение распространения тепла (уравнение теплопроводности) в однородном стержне.

Чтобы решение уравнения (6) было вполне определено, функция u (x, t) должна удовлетворять краевым условиям, соответствующим физическим условиям задачи. Краевые условия для решения уравнения (6) могут быть различные. Условия, которые соответствуют так называемой первой краевой задаче для

, следующие: