Рисунок 5.2 Мережа з композиційним центром
Для однорідної замкненої локально-збалансованої мережі МО з довільною структурою алгоритм обчислення інтенсивності
Крок 1. Ініціалізація:
а функція
Крок 2. Цикл по L=1,…,i-1,i+1,…,M та по
Крок 3. Обчислення інтенсивності обслуговування композиційного центру за формулою
Теорема Нортона залишається справедливою і для неоднорідних локально-збалансованих мереж МО. Для замкненої мережі МО з R класами повідомлень в цьому випадку з метою побудови еквівалентної мережі повинні бути обчислені для усіх
5.3 НАБЛИЖЕНИЙ ДЕКОМПОЗИЦІЙНИЙ АЛГОРИТМ
Описаний вище декомпозиційний підхід є основою наближеного алгоритму розрахунку середніх характеристик замкнених мереж МО з довільною функцією розподілу тривалості обслуговування в центрах. Вказаний ітераційний алгоритм базується на теоремі Нортона і передбачає апроксимацію мережі з довільною функцією розподілу тривалості обслуговування в центрах еквівалентною експоненціальною мережею. Інтенсивності обслуговування в центрах еквівалентної мережі C1, С2 ,…,СM вибираються так, щоб виконувалися наступні умови:
Перша умова відображає закон рівності нормалізованих пропускних спроможностей (пропускна здатність центру i пропорціональна відносній інтенсивності потоку ei). Друга полягає у тому, що в замкненій мережі сума середніх значень довжин черг повинна дорівнювати N. Відмітимо, що обидві умови не залежать від виду функцій розподілу і дисциплін обслуговування в центрах мережі.
Формально вказані умови можна представити у вигляді системи М нелінійних рівнянь з М невідомими:
де
Перейдемо від задачі розв’язання системи нелінійних рівнянь (5.3.7) до еквівалентної задачі мінімізації функції
Ввівши бар’єрну функцію
де γ — ваговий коефіцієнт.
Алгоритм розв’язування початкової задачі розрахунку характеристик замкненої мережі з довільно розподіленою тривалістю обслуговування у вузлах може базуватися або на рішенні оптимізаційної задачі (5.3.9), або на безпосередній перевірці умов (5.3.6). Проте в обох випадках алгоритм реалізує ітеративну процедуру перетворення початкової мережі в мережу з двома центрами. Вказана мережа включає i-й центр початкової мережі
Один з найбільш ефективних наближених підходів дослідження характеристик таких двохвузлових мереж заснований на апроксимації довільної функції розподілу узагальненим розподілом Коксу. При цьому, залежно від значення коефіцієнта варіації wi=1, wi<1 або wi>1 функція розподілу часу обслуговування в центрі апроксимується відповідно експоненціальним, узагальненим ерланговськім або гіперекспоненціальним розподілом.
Ітераційний обчислювальний алгоритм включає наступні основні кроки.
Крок 1. Ініціалізація: інтенсивності обслуговування Ci встановлюються рівними інтенсивностям µi, заданим для початкової мережі, тобто
Крок 2. Для кожного i-го центру
Крок 3. Розраховується замкнена мережа з двома центрами. Обчислюються продуктивність λi(N) і середня довжина черги Li(N).
Крок 4. Якщо
(тут
Крок 5. Якщо
Крок 6. Якщо
Крок 7. Встановлюється
5.4 ДЕКОМПОЗИЦІЯ РОЗІМКНЕНИХ МЕРЕЖ МО НА РІВНІ ПЕРШИХМОМЕНТІВ
В основі даного методу декомпозиції розімкнених однорідних мереж МО лежать наступні два припущення: потоки, що циркулюють в мережі, взаємно незалежні; функції розподілу інтервалів часу між послідовними надходженнями повідомлень в центри і часу обслуговування визначаються першими двома моментами. В рамках зроблених припущень формулюється і розв'язується основна задача декомпозиційної апроксимації — складання і рішення систем рівнянь щодо перших двох моментів (математичного сподівання і дисперсії ) розподілу інтервалів часу між повідомленнями в потоках, що циркулюють по мережі.
Значення
де
Визначимо дисперсії інтервалів часу між повідомленнями у вихідних потоках. Для цього розглянемо два послідовні моменти