де
і — відповідно середнє значення і дисперсія інтервалів часу між повідомленнями вхідного потоку i-го центру; і , — середнє значення і дисперсія часу обслуговування повідомлень в центрі i. Відмітимо, що в стаціонарному режиміде
— ймовірність відсутності повідомлень в i-му центрі. З урахуванням цих співвідношень з (5.4.12) витікає, що залежить від двох невідомих параметрів і або і .Введемо в (5.4.12) рівняння перетворення дисперсії
для суми двох незалежних потоків та
для просіяного потоку (P — ймовірність покидання повідомленням потоку).
Формули (5.4.12) i (5.4.13) дозволяють одержати систему рівнянь балансу дисперсій потоків, аналогічну рівнянням (5.4.10):
де
— дисперсія інтервалів часу між сусідніми повідомленнями потоку, що надходять в i-й центр.РОЗДІЛ 6. МЕТОД ПОЛІНОМІАЛЬНОЇ АПРОКСИМАЦІЇ
6.1 ОПИС МЕТОДУ
На стадії передпроектного обстеження значення початкових даних для проектування обчислювальних систем і мереж відомі лише приблизно. Тому витрати на підвищення точності результатів моделювання на цій стадії проектування виявляються невиправданими. В цьому випадку необхідно використовувати найпростіші методи аналізу. До числа таких методів відноситься метод поліноміальної апроксимації, який дозволяє здійснювати декомпозицію мережі МО на рівні першого моменту розподілу інтервалів часу між повідомленнями в потоках, що циркулюють по мережі.
Розглянемо замкнену однорідну мережу МО, яка складається з М центрів, в яких циркулюють N повідомлень відповідно до матриці маршрутів
. Припускаться, що функція розподілу часу обслуговування в i-му центрі є довільною із заданими першими двома моментамиНехай
- інтенсивність потоку повідомлень через виділений центр (наприклад, перший). Тоді в стаціонарному режимі роботи мережі МОде відносна інтенсивність потоку однозначно визначається із системи рівнянь:
Використовуючи формулу Літтла, загальну кількість повідомлень в мережі МО можна представити в наступному вигляді:
Тут
— час перебування повідомлення в i-му центрі.Проведемо заміну змінної
Тоді середній час циклу (час між надходженнями повідомлень у виділений центр)Даний метод заснований на декомпозиції початкової мережі на окремі незалежні центри і використанні аналога формули Поллячека — Хінчина для оцінки часу перетворення повідомлень в центрі:
Таким чином, задача наближеного аналізу замкненої мережі МО може бути сформульована як задача розв’язання рівняння
відносно змінної X0(N), де
поліном степеня M:Розв’язок отриманого поліноміального рівняння при умові
існує і єдиний. З вибраного виду полінома Р(Х) слідує, що при і розв’язок рівняння (6.1.1) асимптотично збігається з точним значенням.6.2. ОЦІНКА ОБЧИСЛЮВАЛЬНОЇ СКЛАДНОСТІ МЕТОДУ
Оцінку обчислювальної складності методу поліноміальної апроксимації проведемо для однорідних експоненціальних мереж. Для експоненціального розподілу тривалості обслуговування в центрах мережі рівняння (6.1.1) приймає вигляд:
де уведені позначення
таПри розв’язанні рівняння (6.2.2) використовується обмеження
та один з ітераційних методів, наприклад метод поділу навпіл, який дає оцінку зверху кількості арифметичних операційНехай ε — необхідна точність розв’язку. Позначимо
. Вважаючи без обмеження спільності , одержуємо кількість ітерацій, необхідних для відшукання розв’язку з точністю ε: Помітимо, щотобто, при великій кількості центрів число ітерацій
РОЗДІЛ 7. Приклад розрахунку мережі МО
Розглянемо модель замкненої ієрархічної мережі МО, схема якої зображена на рисунку 7.1. У цій мережі циркулює N=30 заявок, у відповідності з маршрутною матрицею. Заявка, яка виходить з головного центру 1 потрапляє у один з аналітичних центрів 2-11, у яких проходить первинну обробку, а потім у центрах
12-18 вторинну та сортировку щодо призначення їх у виконуючі системи 19-20. Після закінчення обслуговування у центрах19-20 виконана заявка потрапляє у головний центр 1, у якому вона замінюється новою, та надходить у центри 2-11.
Якщо у момент надходження повідомлення у один із центрів він зайнятий, то повідомлення займає місце у буфері, у якому очікує звільнення приладу (дисципліна обслуговування ПППО). Буфер з необмеженим числом місць дожидання.
Рисунок 7.1 Приклад мережі МО
Далі приведена маршрутна матриця (табл.7.1) та інтенсивності обслуговування у центрах
(табл.7.2).Таблиця 7.1 Маршрутна матриця
ij | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
1 | 0 | 0,1 | 0,05 | 0,15 | 0,1 | 0,05 | 0,1 | 0,05 | 0,15 | 0,2 | 0,05 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,05 | 0,25 | 0,15 | 0,1 | 0,05 | 0,11 | 0,3 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,05 | 0,15 | 0,1 | 0,25 | 0,3 | 0,1 | 0,05 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,05 | 0,05 | 0,1 | 0,25 | 0,1 | 0,15 | 0,3 | 0 | 0 |
5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,05 | 0,1 | 0,3 | 0,1 | 0,25 | 0,15 | 0,05 | 0 | 0 |
6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,05 | 0,3 | 0,25 | 0,05 | 0,1 | 0,15 | 0,1 | 0 | 0 |
7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,05 | 0,15 | 0,3 | 0,25 | 0,05 | 0,1 | 0,1 | 0 | 0 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,05 | 0,1 | 0,25 | 0,3 | 0,15 | 0,1 | 0,05 | 0 | 0 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,05 | 0,3 | 0,05 | 0,1 | 0,15 | 0,25 | 0,1 | 0 | 0 |
10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,05 | 0,1 | 0,15 | 0,05 | 0,3 | 0,1 | 0,25 | 0 | 0 |
11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,05 | 0,05 | 0,1 | 0,1 | 0,25 | 0,3 | 0,15 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,5 | 0,5 |
13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,67 | 0,33 |
14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,5 | 0,5 |
15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,75 | 0,25 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,25 | 0,75 |
17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,83 | 0,17 |
18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,25 | 0,75 |
19 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
20 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Таблиця 7.2 Інтенсивності обслуговування.