Смекни!
smekni.com

Аналіз експериментальних даних (стр. 1 из 3)

План

1. Дисперсійний аналіз

2. Кореляційний і регресійний аналіз

3.Парна регресія

Література


Аналіз експериментальних даних

В дослідженнях для обробки експериментальних даних найбільш широко застосовуються такі методи математичної статистики, як дисперсійний, кореляційний і регресійний аналіз.

1. Дисперсійний аналіз

Дисперсійний аналіз – основна задача – визначення впливу різних факторів на мінливість ознаки, яка вивчається. Наприклад урожай в польових умовах, успішність студентів. Загальне варіювання (мінливість) -

можна розчленувати на три основні частини:

варіювання варіантів -

;

варіювання повторів -

;

випадкові варіювання -

(1)

Особливостями дисперсійного аналізу є такі положення:

1. Замість середніх для окремих варіантів досліду обчислюється одна загальна середня арифметична для всього досліду в цілому.

2. Замість індивідуальних помилок середніх кожного варіанта досліду обчислюють одну усереднину похибку загальної середньої, яку використовують для оцінки розрізнювання варіантів.

3. Середню похибку досліду знаходять шляхом розкладання загальної дисперсії всіх даних досліду на складові частини, які характеризують варіювання, яке пов’язане з факторами, які вивчаються в досліді, і варіювання випадкове, яке обумовлене різноманітним випадковим впливом зовнішніх умов на мінливість при знаків і властивостей, які вивчаються.

Визначення випадкового варіювання часто є основною задачею дисперсійного аналізу. Воно дає можливість визначити помилку досліду і найменшу суттєву різницю (Н С Р), тобто ту мінімальну різницю між середніми, яка в даному експерименті є суттєвою

де t – критерій Стьюдента для прийнятого рівня значущості і числа ступенів волі залишкової дисперсії (береться з таблиці).

Sd – похибка різниці обчислюється за формулою

(2)

де n – число, що повторюється в порівняльних варіантах;

- залишковий середній квадрат (дисперсія помилок);

- узагальнена помилка середньої

Вибираємо 5% рівень значущості, що означає, що похибка може повторитися 5 раз із 100.

(3)

2. Кореляційний і регресійний аналіз

Якщо необхідно визначити залежність між двома або декількома признаками і встановити їх взаємний зв’язок використовують кореляції і регресії. Теорія кореляції вивчає взаємозв’язок між величинами, які досліджуються. Діалектичний підхід до вивчення природи і суспільства вимагає розглядати явища у взємозв’язку і в неперервному змінюванні. Теорія кореляції дозволяє виразити ці взаємозв’ки у кількісній формі.

Найбільш простим видом зв’язку між величинами є функціональна залежність, коли кожному значенню однієї величини відповідає одне конкретно визначене значення другої величини.

До функціональних зв’зків відноситься наприклад, залежність між об’ємом води W, часом t і використанням Q:

(4)

Якщо змінна величина у змінюється в залежності від іншої змінної х, але на зміну у впливає багато інших факторів, врахувати які інколи не в змозі, то тоді кожному значенню х відповідає декілька значень у. Такі зв’зки називаються кореляційними, або зв’язок між змінними величинами х і у називається кореляційним, якщо різним значенням однієї із них (х) відповідають групові середні другої (у) або навпаки. В таких випадках одна величина розглядається як незалежна змінна і називається аргументом (х), а друга – залежна змінна і називається функцією (у). Загальний вигляд рівняння кореляційного зв’язку y=f(x), де х - аргумент, у – функція.

При графічному зображенні статистичного звя’зку часто точки розміщують так, що можна провести ряд ліній різноманітного типу.

Після встановлення форми зв’язку і її типу визначають її тісноту. В якості числового показника зв’язку простої лінійної кореляції використовують коефіцієнт кореляції

(5)

де

і
- відхилення значень х і у від своїх середніх
і
в п порівнювальних парах.

Стандартну похибку коефіцієнта кореляції визначають з рівняння

(6)

r – коефіцієнт кореляції; п – число пар значень, за якими обчислений коефіцієнт кореляції. Значення коефіцієнта кореляції записується разом з його похибкою у вигляді

. Критерій суттєвого коефіцієнта кореляції t обчислюють з рівняння

або
(7)

Зіставлення фактичного і теоретичного (табличного) значень t при числі ступеню волі п-2 дає можливість оцінити суттєвість r при тому чи іншому рівню значущості.

Якщо

, то кореляційний зв’язок існує, а якщо
- не існує.

Поряд з коефіцієнтом кореляції для характеристики зв’язку між двома ознаками використовують коефіцієнт детермінації

, який чисельно рівний квадрату коефіцієнта кореляції:

(8)

Коефіцієнт детермінації показує частину тих змін, які у залежності, яку вивчають обумовлені факторіальними ознаками і дають більш чітке уявлення про ступінь спряження ознак. Наприклад, якщо коефіцієнт кореляції рівний 0,20 – 0,30, то коефіцієнт детермінації

тобто тільки 4-9% всіх вимірів однієї ознаки пов’язані із змінами другої. При
число зв’язків збільшується до 25-30% і тільки при
біля 97% зміна результативної ознаки пов’язано із змінами факторіального.

Кореляційне відношення обчислюється

(9)

де η – кореляційне відношення; Sv – сума квадратів відхилення за варіантами;

Sy – загальна сума квадратів.

Кореляційне відношення використовується для оцінки криволінійної форми зв’зку між ознаками і має додатній знак, змінюється від 0 до 1.

При малому числі спостережень кореляційне відношення обчислюється:

(10)

де

- сума квадратів відхилень групових і середніх
від загальної середньої
(групове варіювання), яка характеризує ту частину варіювання ознаки
, яка пов’язана з мінливістю ознаки
.

- сума квадратів різниці між кожним значенням і загальною середньою
, яка характеризує загальне варіювання ознаки
.

Похибка

і критерій істотного кореляційного відношення обчислюється за рівнянням:

;
(11)

Фактичне значення

порівнюють з теоретичним, який приймається для вибраного рівня значущості при числі ступенів волі
з таблиці. Якщо
, то кореляційне відношення суттєве.

Квадрат кореляційного відношення називають індексом детермінації:

(12)

Він показує ту долю варіювання ознаки

, яка обумовлена змінами ознаки
.