Смекни!
smekni.com

Взаимозаменяемость продовольственных продуктов масла животного и масла растительного. Их потреб (стр. 2 из 6)

В декартовой системе координат ХОУ на поле корреляции строим и график линии регрессии по найденному уравнению.

Действительно, видим, что точки поля корреляции плотно расположены вдоль прямой регрессии. А значит, построенная линейная модель хорошо описывает стат. данные. Проведём подробный анализ её качества.


Этап 6 Верификация

Линейный коэффициент корреляции

Вычислим егопо другой формуле, проверим правильность расчётов:

- совпадает с вычисленным ранее (небольшое различие – из-за округления).

Коэффициент детерминации

По свойству:

.

Он показывает, что вариация результативного признака Y (потребление животного масла) на 90,6% объясняется вариацией фактора X (потребление растительного масла). То есть потребление животного масла на 78,6% обусловлены взаимозаменяемостью растительного масла. А в остальном – на 9,4% потребления животного масла обусловлено колебаниями и изменениями других факторов и условий.

Т.е., подтвердилось предположение о взаимозаменяемости потребления животного масла и растительного масла.

Средний коэффициент эластичности

Для линейной регрессии:

.

Средний коэффициент эластичности показывает, что в среднем при увеличении потребления животного масла на 1% от своего среднего значения, потребление растительного масла увеличится в среднем на 0,923% от своего среднего значения.

Эластичность взаимозаменяемых товаров достаточно велика, что вполне согласуется со сложившейся ситуацией на рынке продовольствия в РФ. Чем выше продажа растительного масла, тем сильнее и заметнее растет продажа животного масла. Проверим правильность вычислений:

(см. расчётную табл. - действительно).

Оценка статистической значимости коэффициентов регрессии и коэффициента корреляции

Оценим статистическую значимость полученных коэффициентов регрессии а0 и а1, коэффициента корреляции rух с помощью t-критерия Стьюдента на уровне значимости d=0,05.

Эта проверка проводится по единой схеме, с помощью гипотез.

Выдвигается нулевая гипотеза Н0 о случайной природе полученного коэффициента, о незначимом его отличии от нуля, то есть гипотеза Н0 состоит в том, что коэффициент=0. Альтернативная ей гипотеза Н1 состоит в том, что

неслучайно, то есть полученный коэффициент статистически значим. Чтобы опровергнуть гипотезу Н0 и подтвердить гипотезу Н1 должно выполняться неравенство
на уровне значимости
и с (n2) степенями свободы, где n – количество наблюдений, уровень значимости – вероятность совершить ошибку, отвергнув гипотезу Н0, когда она верна.

Для а1: Н0: а1=0, Н1:

.

Рассчитаем стандартную ошибку коэффициента регрессии а1

.

Потребуется сделать промежуточные вычисления: подставляя фактические значения хi в уравнение регрессии найдем смоделированные значения

, затем вычислим разность между фактическими и смоделированными значениями, т.е. остатки
, затем возведём остатки в квадрат еi2 и просуммируем; результаты представлены в расчетной таблице. Теперь подставим необходимые данные в формулу для расчёта
:
иt-статистики по модулю:
.

Затем сравним наблюдаемое значение

с табличным значением t-критерия Стьюдента. Табличное значение по таблице распределения Стьюдента на уровне значимости d=0,05 с n2=55-2=53степенями свободы: tтабл=2,01. Наблюдаемое значение t-статистики превышает табличное значение t-критерия: 22 > 2,01, то есть выполнено неравенство
, а значит, гипотеза Н0 о случайной природе полученного коэффициента отвергается и принимается альтернативная ей гипотеза Н1, свидетельствующая в 95% случаев остатистической значимости полученного коэффициента регрессии а1. Т.о., можно считать, что взаимозаменяемость товаров подтвердилась и статистически установлена.

Для а0: Н0: а0=0, Н1:

.

Рассчитаем стандартную ошибку коэффициента регрессии а0

. Все необходимые цифры уже имеются в расчетной таблице, подставим эти данные в формулу:
, а затем рассчитаем t-статистику по модулю:
.

Сравнивая рассчитанное значение с табличным значением t-критерия Стьюдента на уровне значимости d=0,05 с n2=55-2=53степенями свободы: tтабл=2,01,где 2<ta0< 3 (tтабл > ta0) можно сделать вывод, что коэффициент регрессии а0можно признать статистически значимым в 90% случаев.

Для rух: Н0: rух=0, Н1:

.

Для этого рассчитаем стандартную ошибку коэффициента корреляции rух

:
иt-статистику по модулю:
.

Сравнивая рассчитанное значение с табличным значением t-критерия Стьюдента на уровне значимости d=0,05 с n2=55-2=53степенями свободы: tтабл=2,01, можно сделать вывод остатистической значимости полученного коэффициента корреляции rухв 95% случаев, предполагаемая взаимозаменяемость товаров подтвердилась.

Проверим правильность вычислений:

, действительно 22»22,7.

Доверительные интервалы для параметров регрессионной модели a0 и a1

Доверительный интервал для a0 с надежностью g=1-d:

. Выбрав уровень значимости d=0,05, получаем надежность g=0,95. Все необходимые цифровые значения уже рассчитаны ранее, тогда
, откуда получаем (0,4312; 12,813).ыберемрительной вероятностью ров регрессионной модели

Доверительный интервал для a1 с надежностью g=1-d:

. При выбранной надежности g=0,95:
, откуда (0,32; 0,384).

Таким образом, с надежностью 95% можно утверждать, что истинное значение параметра a0 будет заключено в пределах от 0,4312 до 12,813, а истинное значение параметра a1 - в границах от 0,32 до 0,384.

Следует отметить, что доверительные интервалы узкие, т.к. значения стандартных ошибок

и
малы. А это подтверждает, что другие факторы оказывают несущественное влияние на покупательскую способность товаров. Основным фактором является выбранный фактор Х – замена растительным маслом. Значит, точность модели будет вполне приемлемой.

Оценка качества уравнения регрессии в целом

F-критерий Фишера

Выдвигается нулевая гипотеза Н0 о статистической незначимости уравнения регрессии. Альтернативная ей гипотеза Н1 о статистической значимости. Чтобы опровергнуть гипотезу Н0 и подтвердить гипотезу Н1 должно выполняться неравенство

.

Рассчитаем наблюдаемое значение F-критерия (воспользуемся свойством для линейной парной регрессии):

.

Табличное значение по таблице распределения Фишера на уровне значимости d=0,05 с k1=1 и k2=n2=23-2=21степенями свободы: Fтабл=4,03. Наблюдаемое значение F–критерия превышает табличное: 510,83 > 4,03, то есть выполнено неравенство

, а значит, гипотеза Н0 о случайной природе полученного уравнения регрессии отклоняется в пользу гипотезы Н1, свидетельствующей в 95% случаев оего статистической значимости и взаимозаменяемости товаров. Уравнение по данным выборки можно признать надежным и значимым, доказывающим наличие исследуемой зависимости.