Смекни!
smekni.com

Взаимозаменяемость продовольственных продуктов масла животного и масла растительного. Их потреб (стр. 5 из 6)

7. Сравниваем его с табличным значением F-критерия Фишера на уровне значимости d с (k-1) и (k-1) степенями свободы, где k – объёмы оставшихся частей выборки.

На уровне значимости d=0,05 с 17 и 17 степенями свободы табличное значение

.

8. Выдвигаем гипотезу Н0 об отсутствии гетероскедастичности (выполнении предпосылки 2). Альтернативная ей Н1 о наличии гетероскедастичности (нарушении предпосылки 2).

9. Т.к. наблюдаемое значение превышает табличное:

, то мы вынуждены принять гипотезу о наличии гетероскедастичности, подтвердив свои предположения о нарушении предпосылки 2.

Возможно, этим объясняется большая ошибка аппроксимации.

Т.к. Fe не намного превышает Fтабл, то можно сказать, что последствия гетероскедастичности выражены несильно, и несильно сказываются на качестве модели. В данном случае эффективнее будет пренебречь этим несильным нарушением предпосылки 2, чем корректировать модель.

Предпосылка 3 О некоррелированности остатков

Т.к. выборка – пространственная, то для таких выборок нарушения этой предпосылки обычно несвойственно, т.к. не участвует фактор времени. Но чтобы убедиться в этом проверим Автокорреляцию остатков хотя бы 1-го уровня.


Полученные остатки сместим на 1 наблюдение – получим остатки 1-го уровня.

ei ei-1 ei* ei-1
Республика Адыгея 4,5388
Республика Дагестан 7,742 4,5388 35,139
Республика Ингушетия 0,098 7,742 0,759
Кабардино-Балкарская Республика 0,306 0,098 0,030
Республика Калмыкия -1,7068 0,306 -0,522
Карачаево-Черкесская Республика -1,4236 -1,7068 2,430
Республика Северная Осетия - Алания 0,4644 -1,4236 -0,661
Краснодарский край 12,2612 0,4644 5,694
Ставропольский край 12,066 12,2612 147,944
Астраханская область -25,1124 12,066 -303,006
Волгоградская область 0,6932 -25,1124 -17,408
Ростовская область 5,3412 0,6932 3,703
Республика Башкортостан -7,0004 5,3412 -37,391
Республика Марий Эл -5,1892 -7,0004 36,326
Республика Мордовия 0,3092 -5,1892 -1,605
Республика Татарстан -17,9644 0,3092 -5,555
Удмуртская Республика -0,6876 -17,9644 12,352
Чувашская Республика 3,4164 -0,6876 -2,349
Пермский край -8,614 3,4164 -29,429
Кировская область 12,8636 -8,614 -110,807
Нижегородская область 6,3964 12,8636 82,281
Оренбургская область 6,0012 6,3964 38,386
Пензенская область -11,4804 6,0012 -68,896
Самарская область 4,8812 -11,4804 -56,038
Саратовская область -16,8924 4,8812 -82,455
Ульяновская область -4,4396 -16,8924 74,995
Курганская область 6,31 -4,4396 -28,014
Свердловская область 2,7772 6,31 17,524
Тюменская область -6,518 2,7772 -18,102
Ханты-Мансийский авт. округ-Югра -21,9524 -6,518 143,086
Ямало-Ненецкий авт. округ 2,9492 -21,9524 -64,742
ei ei-1 ei* ei-1
Челябинская область 0,8636 2,9492 2,547
Республика Алтай -2,6236 0,8636 -2,266
Республика Бурятия -6,5572 -2,6236 17,203
Республика Тыва -3,402 -6,5572 22,308
Республика Хакасия 0,1956 -3,402 -0,665
Алтайский край 11,6428 0,1956 2,277
Забайкальский край -14,3884 11,6428 -167,521
Агинский Бурятский авт. округ -9,2724 -14,3884 133,415
Красноярский край 0,8908 -9,2724 -8,260
Иркутская область -8,8524 0,8908 -7,886
Усть-Ордынский Бурятский авт. округ -7,9676 -8,8524 70,532
Кемеровская область 4,2788 -7,9676 -34,092
Новосибирская область -2,9532 4,2788 -12,636
Омская область -0,2284 -2,9532 0,675
Томская область -4,106 -0,2284 0,938
Республика Саха (Якутия) -20,3588 -4,106 83,593
Камчатский край 19,0284 -20,3588 -387,395
Приморский край 6,0436 19,0284 115,000
Хабаровский край 26,61 6,0436 160,820
Амурская область 15,4124 26,61 410,124
Магаданская область 9,9132 15,4124 152,786
Сахалинская область 24,2364 9,9132 240,260
Еврейская автономная область 2,37 24,2364 57,440
Чукотский авт. округ -0,9764 2,37 -2,314
-0,9764
Сумма от 2-го по 55-й -4,3056 1,2099 620,554
Ср. знач. -0,080 0,022 11,4917331
Станд. откл. 10,36 10,486

Чтобы оценить отсутствие или наличие Автокорреляции 1-го уровня, выясним, есть ли зависимость между остатками модели и остатками 1-го уровня. Из-за смещения останется на 1 значение меньше – 22: со 2-го по 23-е наблюдение. Вычислим коэффициент корреляции междуeiи ei-1 по его известной формуле:

(где

).

Итак, коэффициент корреляции показывает, что зависимость слабая. Т.е. автокорреляция остатков 1-го уровня слабая. И т.к. выборка пространственная, то этим небольшим нарушением предпосылки 3 можно пренебречь.

Предпосылка 4 О некоррелированности значений фактора и остатков

Построим поле корреляции между фактором Х и остатками е.

По этому расположению точек

делаем вывод о том, ни закономерности, ни систематического смещения их не наблюдается.

Рассчитываем коэффициент корреляции между фактором Х и остатками е (по обычной формуле):

.

Значит, фактор Х и остатки е – некоррелированы. Предпосылка 4 не нарушена.

Предпосылки 1 и 5. О нормальном распределении остатков с нулевым матем. ожиданием

По значениям остатков модели построим интервальный вариационный ряд частот. Значения остатков изменяются от min(е)= --25,1124 до max(е)=24,2364. Тогда нижней границей будет -25, а верхней 24, длина всего этого интервала 25+24=49. Его удобно разбить на 7 интервалов. Пусть будет 7 интервалов, их длины 49/7=7. Считаем сколько значений еiпопадает в каждый из них. И выписываем интервальный вариационный ряд в виде таблицы:

Границы [-25; -18) [-18; -11) [-11; -4) [-4; 3) [3; 10) [10; 17) [17; 24)
Частоты 3 3 11 19 11 5 3

Строим по нему гистограмму частот.

На этом же графике построим график кривой плотности нормального распределения (в соответствующем масштабе) с матем. ожиданием = 0 и сравним форму гистограммы и нормальной кривой.

Для данной выборки можно увидеть, что гистограмма частот остатков более-менее близка по форме к нормальной кривой. Но говорить уверенно о том, что остатки точно распределены нормально, нельзя. Возможно, при большем объёме выборки форма гистограммы была бы более понятной и однозначной.

В данном же исследовании на основании этого графика примем предположение о нормальности остатков. И будем считать, что предпосылки 1 и 5 не нарушены.

Выводы:

Высоко статистически значимые коэффициенты регрессии а0 и а1, коэффициент корреляции rух свидетельствуют о наличии сильной положительной взаимозаменяемости товаров. Это подтверждается и проверкой качества уравнения регрессии по F-критерию Фишера. Т.е., можно считать, что наличие взаимозаменяемости статистически доказано, направление и общая тенденция отражена уравнением регрессии верно и согласуется с состоянием рынка продовольственных товаров. Значения стандартных ошибок

и
для коэффициентов а0 и а1 малы, и доверительные интервалы для параметров модели a0 и a1 не широки, а также высокое значение коэффициента детерминации R2 указывают, что взаимозаменяемость потребления животного масла растительным маслом доказана. Влияние же других экономических (и случайных, в том числе) факторов – намного менее существенно.