
- нормализатор подгруппы

в группе

;

- центр группы

;

- циклическая группа порядка

;

- ядро подгруппы

в группе

, т.е. пересечение всех подгрупп, сопряжённых с

в

.
Если

и

- подгруппы группы

, то:

- прямое произведение подгрупп

и

;

- полупрямое произведение нормальной подгруппы

и подгруппы

;

-

и

изоморфны.
Группа

называется:
примарной, если

;
бипримарной, если

.
Скобки

применяются для обозначения подгрупп, порождённых некоторым множеством элементов или подгрупп.

- подгруппа, порожденная всеми

, для которых выполняется

.

, где

.
Группу

называют:

-замкнутой, если силовская

-подгруппа группы

нормальна в

;

-нильпотентной, если

-холловская подгруппа группы

нормальна в

;

-разрешимой, если существует нормальный ряд, факторы которого либо

-группы, либо

-группы;

-сверхразрешимой, если каждый ее главный фактор является либо

-группой, либо циклической группой;
нильпотентной, если все ее силовские подгруппы нормальны;
метанильпотентной, если существует нормальная нильпотентная подгруппа

группы

такая, что

нильпотентна.
разрешимой, если существует номер

такой, что

;
сверхразрешимой, если она обладает главным рядом, все индексы которого являются простыми числами.
Группа Шмидта - это конечная ненильпотентная группа, все собственные группы которой нильпотентны.
Добавлением к подгруппе

группы

называется такая подгруппа

из

, что

.
Минимальная нормальная подгруппа группы

- неединичная нормальная подгруппа группы

, не содержащая собственных неединичных нормальных подгрупп группы

.
Цоколь группы

- произведение всех минимальных нормальных подгрупп группы

.

- цоколь группы

.
Классы групп, т.е. совокупности групп, замкнутые относительно изоморфизмов, обозначаются прописными готическими буквами. Также обозначаются формации, т.е. классы групп, замкнутые относительно факторгрупп и подпрямых произведений. За некоторыми классами закреплены стандартные обозначения:

- класс всех групп;

- класс всех абелевых групп;

- класс всех нильпотентных групп;

- класс всех разрешимых групп;

- класс всех

-групп;

- класс всех сверхразрешимых групп;
Формации - это классы конечных групп, замкнутые относительно взятия гомоморфных образов и конечных подпрямых произведений.
Пусть

- некоторый класс групп и

- группа, тогда:

-

-корадикал группы

, т.е. пересечение всех тех нормальных подгрупп

из

, для которых

. Если

- формация, то

является наименьшей нормальной подгруппой группы

, факторгруппа по которой принадлежит

. Если

- формация всех сверхразрешимых групп, то

называется сверхразрешимым корадикалом группы

.
Формация

называется насыщенной, если всегда из

следует, что и

.