сверхразрешима. Полученное противоречие завершает доказательство теоремы.
Группа дисперсивна по Оре тогда и только тогда, когда , где подгруппа квазинормальна в , дисперсивна по Оре и каждая максимальная подгруппа любой нециклической силовской подгруппы группы слабо нормальна в .
Доказательство. Пусть
, где подгруппа квазинормальна в , дисперсивна по Оре и каждая максимальная подгруппа любой нециклической силовской подгруппы группы слабо нормальна в . Покажем, что группа дисперсивна по Оре. Предположим, что это не верно и пусть - контрпример минимального порядка. Тогда:(1) Каждая собственная подгруппа группы , содержащая , дисперсивна по Оре.
Пусть
, где . Тогдагде
дисперсивна по Оре и квазинормальна в . Так как по лемме (2) любая максимальная подгруппа каждой нециклической силовской подгруппы из слабо нормальна в и , то по выбору группы мы имеем (1).(2) Пусть - неединичная нормальная подгруппа в , являющаяся -группа для некоторого простого числа . Допустим, что либо содержит силовскую -подгруппу из , либо циклична, либо . Тогда дисперсивна по Оре.
Если
, тодисперсивна по Оре. Пусть теперь
. Так как , то нам лишь нужно показать, что условия теоремы справедливы для . Ясно, чтогде
квазинормальна в и дисперсивна по Оре. Пусть силовская -подгруппа из и - произвольная максимальная подгруппа в . Пусть - силовская -подгруппа из , такая что . Ясно, что - силовская -подгруппа группы . Значит, для некоторой силовской -подгруппы из . Предположим, что не является циклической подгруппой. Тогда не циклична. Покажем, что слабо нормальна в . Если , то это прямо следует из леммы . Допустим, что либо силовская -подгруппа из циклическая, либо . Тогда . Покажем, что - максимальная в подгруппа. Так как и , тоПредположим, что для некоторой подгруппы
из мы имеемгде
Тогда
Так как
- максимальная в подгруппа, то либо , либо . Если , то , что противоречит выбору подгруппы . Значит, и поэтому мы имеемпротиворечие. Следовательно,
- максимальная в подгруппа и по условию слабо нормальна в . Значит,