Смекни!
smekni.com

Особенности понимания детьми старшего дошкольного возраста арифметической задачи (стр. 1 из 3)

Особенности понимания детьми старшего дошкольного возраста арифметической задачи.

Контрольная работа

по теории и методике формирования элементарных математических представлений.

Содержание.

Введение

1. Теоретические и методические основы обучения детей старшего дошкольного возраста решению и составлению арифметических задач.

1.1. Задача, как математическое понятие. Роль арифметической задачи в понимании сущности арифметического действия.

1.2. Современные методические подходы к вопросу обучения детей 6-7 лет решению задач. Виды арифметических задач, используемые в работе с дошкольниками.

1.3. Последовательные этапы в обучении решению арифметических задач. Моделирование как метод обучения детей старшего дошкольного возраста составлению и решению простых арифметических задач.

2. Особенности умений составлять и решать простые арифметические задачи детей старшего дошкольного возраста.

2.1. Цель, задачи и методика выявления умений старших дошкольников составлять и решать простые арифметические задачи.

2.2. Понимание детьми подготовительной к школе группы сущности ( структуры) простой арифметической задачи.

2.3. Особенности умений составлять арифметическую задачу детьми старшего дошкольного возраста.

2.4. Специфика решения детьми старшего дошкольного возраста простых арифметических задач.

2.5. Методические рекомендации по повышению эффективности обучения детей старшего дошкольного возраста решению арифметических задач.

Заключение.

Литература.

Введение.

В современном обществе все больше внимания уделяется обучению, воспитанию и развитию подрастающего поколения. Особая роль в образовании принадлежит дошкольной педагогике. Именно в дошкольном детстве, в процессе социально-организованной и стимулированной деятельности, происходит становление психических процессов, развиваются качества личности(П. П. Блонский, Л.С. Выготский, А. Н. Леонтьев, Д. Б. Эльконин и др. ).Огромное значение в образовании, развитии, социальной адаптации и подготовке к школьному обучению принадлежит формированию математических представлений у дошкольников.

В литературе имеется немало исследований, посвященных проблеме обучения математике дошкольников ( Я. А. Коменский, И.Г. Песталоцци, К. Д. Ушинский, М. Монтесори, Ф. Н. Блехер, А. М. Леушина, В. И. Логинова. Л. Н. Вахрушева и др.). Разработаны многочисленные программы развития и воспитания детей в дошкольных учреждениях, в которых отражены цели и задачи процесса формирования элементарных математических представлений: «Детский сад – дом радости» (И. М. Крылова, В. Т. Иванова), «Радуга» (Т. Н. Доронова, С. Г. Якобсон и др.), «Развитие» (Л. А. Венгер и др.), «Детство» (В. И. Логинова, Т. И. Бабаева, Н.А. Ноткина и др.). Формирование первичных математических представлений является мощным средством интеллектуального развития ребенка, его познавательных и творческих способностей.

1 Теоретические и методические основы обучения детей старшего дошкольного возраста решению и составлению арифметических задач.

1.1Задача как математическое понятие. Роль арифметической задачи в понимании сущности арифметического действия.

Под математическим развитием дошкольников понимаются качественные изменения познавательной деятельности ребенка, которые происходят в результате формирования элементарных математических представлений, связанных с ними логических операций. Математическое развитие - значимый компонент формирования «картины мира» ребенка. Одна из важных задач воспитателей и родителей - развить у ребенка интерес к математике в дошкольном возрасте. Приобщение к этому предмету в игровой и занимательной форме помогает ребенку в дальнейшем быстрее и легче усваивать школьную программу.

К моменту поступления в школу дети должны усвоить относительно широкий круг взаимосвязанных знаний о множестве и числе, форме и величине, научиться ориентироваться в пространстве и во времени.

У детей должны быть воспитаны устойчивый интерес к математическим знаниям, умение пользоваться ими и стремление самостоятельно их приобретать.

Математика проникает почти во все области деятельности человека, что положительно сказалось на темпе роста научно-технического прогресса. В связи с этим стало жизненно необходимым усовершенствовать математическую подготовку подрастающего поколения.

Решение задач – это работа несколько необычная, а именно умственная работа. А чтобы научиться какой-либо работе, нужно предварительно хорошо изучить тот материал, над которым придётся работать, те инструменты, с помощью которых выполняется эта работа. Значит, для того чтобы научиться решать задачи, надо разобраться в том, что собой они представляют, как они устроены, из каких составных частей они состоят, каковы инструменты, с помощью которых производится решение задач. Каждая задача – это единство условия и цели. Если нет одного из этих компонентов, то нет и задачи. Это очень важно иметь в виду, чтобы проводить анализ текста задачи с соблюдением такого единства. Это означает, что анализ условия задачи необходимо соотносить с вопросом задачи и, наоборот, вопрос задачи анализировать направленно с условием. Их нельзя разрывать, так как они составляют одно целое.

Математическая задача – это связанный лаконический рассказ, в котором введены значения некоторых величин и предлагается отыскать другие неизвестные значения величин, зависимые от данных и связанные с ними определенными соотношениями, указанными в условии.

Любая текстовая задача состоит из двух частей: условия и требования (вопроса).

В условии соблюдаются сведения об объектах и некоторых величинах, характеризующих данные объекта, об известных и неизвестных значениях этих величин, об отношениях между ними.

Требования задачи – это указание того, что нужно найти. Оно может быть выражено предложением в повелительной или вопросительной форме («Найти площадь треугольника.» или «Чему равна площадь прямоугольника?»).

Задачи и решение их занимают в обучении дошкольников весьма существенное место и по времени, и по их влиянию на умственное развитие ребенка.

Понимая роль задачи и её место в обучении и воспитании ребенка, педагог должен подходить к подбору задачи и выбору способов решения обоснованно и чётко знать, что должна дать дошкольнику работа при решении данной им задачи.

Решение задачи – это выполнение арифметических действий, выбранных при составлении плана решения. При этом обязательны пояснения, что находим, выполняя каждое действие.

Проверить решение задачи – значит установить, что оно правильно или ошибочно.

Решение задач – упражнения, развивающие мышление. Мало того, решение задач способствует воспитанию терпения, настойчивости, воли, способствует пробуждению интереса к самому процессу поиска решения, дает возможность испытать глубокое удовлетворение, связанное с удачным решением.

Решение арифметических задач имеет огромное значение для развития речи. Дети учатся составлять фразы, высказывать свои мысли, анализировать значения слов, устанавливать связи между ними, пересказывать содержание, что развивает активный и пассивный словарный запас, умение грамматически правильно употреблять слова, строить распространенные предложения.

1.2 Виды арифметических задач, используемых в работе с дошкольниками.

Простые задачи, т.е. задачи, решаемые одним действием (сло­жением или вычитанием), принято делить на следующие группы.

К первой группе относятся простые задачи, при решении которых дети усваивают конкретный смысл каждого из арифме­тических действий, т. е. какое арифметическое действие соответ­ствует той или иной операции над множествами (сложение или вычитание). Это задачи на нахождение суммы двух чисел и на нахождение остатка.

Ко второй группе относятся простые задачи, при решении которых надо осмыслить связь между компонентами и результатами арифметических действии. Это задачи на нахождение неизвестных компонентов:

а) нахождение первого слагаемого по известным сумме и вто­рому слагаемому («Нина вылепила из пластилина несколько гриб­ков и мишку, а всего она вылепила 8 фигур. Сколько грибков вылепила Нина?»);

б) нахождение второго слагаемого по известным сумме и перво­му слагаемому («Витя вылепил 1 мишку и несколько зайчиков. Всего он вылепил 7 фигур. Сколько зайчиков вылепил Витя?»);

в) нахождение уменьшаемого по известным вычитаемому и раз­ности («Дети сделали на елку несколько гирлянд. Одну из них уже повесили на елку, у них осталось 3 гирлянды. Сколько всего гирлянд сделали дети?»);

г) нахождение вычитаемого по известным уменьшаемому и разности («Дети, сделали 8 гирлянд на елку. Когда они повесили на елку несколько гирлянд, у них осталась одна гирлянда. Сколь­ко гирлянд повесили на елку?»).

К третьей группе относятся простые задачи, связанные с понятием разностных отношений:

а) увеличение числа на несколько единиц («Леша вылепил 6 морковок, а Костя на одну больше. Сколько морковок вылепил Костя?»);

б) уменьшение числа на несколько единиц («Маша вымыла 4 чашки, а Таня на одну чашку меньше. Сколько чашек вымыла Таня?»).

Имеются и другие разновидности простых задач, в которых раскрывается новый смысл арифметических действий, но с ними, как правило, дошкольников не знакомят, поскольку в детском саду достаточно подвести детей к элементарному пониманию отноше­ний между компонентами и результатами арифметических дейст­вий - сложения и вычитания.

В зависимости от используемого для составления задач нагляд­ного материала они подразделяются на:

· задачи-драматизации

· задачи-иллюстрации

· задачи-картинки

Каждая разновидность этих задач обладает своими особенностями и раскрывает перед детьми те или иные стороны (роль тематики, сюжета, характера отношений между число­выми данными и др.), а также способствует развитию умения отби­рать для сюжета задачи необходимый жизненный, бытовой, игро­вой материал, учит логически мыслить.