Тогда обратная замена:
Уравнение торса в новых координатах примет вид:
Обозначим U, V теми же символами u, v тогда уравнение торса перепишется следующим образом:
.(29)
Рассмотрим на торсе (29) кривую
u=u(t), v=v(t).(30)
Получим ее уравнение в виде:
. (31)
Направляющий вектор касательной:
. (32)
Касательная к любой кривой, лежащей на торсе и проходящей через данную точку N, лежит в плоскости
Эта плоскость будет называться касательной плоскостью к торсу и обозначается
Найдем векторы
. Из уравнения (29) получим:
.Таким образом, плоскость
определяется точкой L торса и векторами
, и следовательно, совпадает с соприкасающейся плоскостью ребра возврата g.
Получена теорема.
Теорема 4.1. Касательная плоскость к торсу в произвольной точке прямолинейной образующей совпадает с соприкасающейся плоскостью к ребру возврата в точке касания прямолинейной образующей.
Построим канонический репер в произвольной точке N торса. Будем считать параметр u естественным параметром ребра возврата. Тогда согласно
(9):
Введем следующие обозначения:
Тогда
- вектор мнимой длины, а - вектор единичной длины, взаимно ортогональные и лежат в касательной плоскости к торсу в точке N, совпадающей с соприкасающейся плоскостью ребра возврата, причем идет по прямолинейной образующей, а ему ортогонален.
Вектора
получим из векторов соприкасающегося репера ребра возврата параллельным переносом в точку L. При этом получим репер в произвольной точке L торса, с условием .(33)Уравнение (33) целиком определяется торсом. Этот репер
будем называть каноническим репером торса.Найдем деривационные формулы канонического репера торса
с учетом того, что зависят только от u. С учетом (14) и (15): и (34)
§5. Линии на торсах пространства Минковского
Рассмотрим торс в пространстве Минковского, заданный уравнением (29)
.Будем считать, что соприкасающийся флаг ребра возврата
имеет тип 50: {M, 1R1, 1R2, 1R3, 1R4}, где параметр u есть естественный параметр на ребре возврата . В данном случае на торсе строится канонический репер {M, }. Деривационные формулы этого репера имеют вид (34).Определение 5.1. Кривая d: u=u(t); v=v(t) (35) на торсе Т называется (k,n) – геодезической, если соприкасающаяся n - плоскость этой кривой в каждой точке содержит k – мерную нормаль к торсу.
Возможны варианты: (1,2); (1,3); (2,3). Выясним существуют ли такие геодезические кривые на торсе данного типа. Касательная плоскость к торсу в точке L есть плоскость
, а нормальная плоскость к торсу . Найдем соприкасающуюся 2-плоскость линии d: r=r(u(t),v(t)). Эта плоскость определяется так: . Находим производные вектор - функции, преобразуем их с помощью деривационных формул (34): (36) (37)
+ + + + + + + ++
++
++
++
+ ++
++
++
+ + ++
++
( +
+ +
)+ ( + )+ (38)
Нормаль к торсу
зададим в виде: . С другой стороны, нормаль к поверхности, исходя из определения, содержится в соприкасающейся 2-плоскости , т.е. . Составим уравнение =p( )+q( ).