Смекни!
smekni.com

Дифференциальная геометрия торсов в пространстве 1R4 с псевдоевклидовой касательной плоскостью (стр. 8 из 8)

Сгруппировав коэффициенты при

, получаем систему:

Из системы видим, что если (1,2) – геодезическая линия существует, то она определяется нормалью

. Учитывая этот факт, преобразуем систему следующим образом:


Таким образом, уравнение (1,2) – геодезической линии можно представить в виде нормальной системы дифференциальных уравнений:

(39)

Теорема Пикара. Если правые части системы

в некоторой окрестности начальной точки (

) имеют непрерывные в этой окрестности частные производные по
, то система имеет единственное решение, определенное в некоторой окрестности точки
и удовлетворяющее начальным условиям

.

Согласно теореме Пикара система (39) имеет единственное решение. Значит, через каждую точку торса в каждом направлении касательной плоскости проходит единственная (1,2) – геодезическая линия.

Пусть d: r=r(u(t),v(t)) на торсе является (2,2) – геодезической. Тогда, согласно определению, система (38’) должна быть разрешима при любых коэффициентах

и
, но т.к.
, то это условие не выполняется. Значит, на торсе с касательной псевдоевклидовой плоскостью не существует (2,2) – геодезических линий.

Теорема 5.1. Геодезических линий типа (2,2) на торсе нет.

Рассмотрим вопрос о существовании (1,3) – геодезических линий на торсе. Соприкасающуюся 3-плоскость к кривой в некоторой точке можем задать линейным уравнением

Таким образом, нормальная плоскость и соприкасающаяся 3-плоскость всегда имеют пересечение, являющееся не менее чем прямой. Значит, любая линия на рассматриваемой поверхности является (1,3)-геодезической.


§6. Асимптотические линии на торсе пространства Минковского

Определение 6.1. Направление на поверхности называется асимптотическим, если нормальная кривизна поверхности в этом направлении обращается в нуль.

Определение 6.2. Нормальной кривизной кривой на поверхности пространства Минковского называется проекция вектора кривизны этой кривой на нормальную плоскость к поверхности в этой точке.

Определение 6.3. Кривая на поверхности называется асимптотической линией, если в каждой своей точке она имеет асимптотическое направление.

Определение 6.4. Вектором кривизны кривой

на поверхности пространства Минковского будем называть вектор
, где s – естественная параметризация на этой кривой.

Пусть

- произвольная кривая на торсе. Построим канонический репер кривой в точке N:
. Нормальная кривизна кривой
в точке N – это проекция вектора кривизны
на нормаль к поверхности. В пространстве 1R4 к поверхности в данной точке существует целая плоскость нормалей, поэтому необходимо определить нормаль, на которую будет проецироваться вектор кривизны. Координаты вектора
в репере
согласно формуле (37) равны:

º(A;B;C;0)

Нормальную кривизну

определим как длину отрезка NL1, где L1 – точка пересечения плоскости
и проходящей через точку L, с нормальной плоскостью
. Определим координаты точки L1:
x1=0, x2=0,
x3=0, x4=0; Þ
x3=C, x4=0. Значит,
, т.е. нормальная кривизна кривой
на торсе пространства Минковского, с псевдоевклидовой касательной плоскостью, является действительной величиной.

Определим геодезическую кривизну

кривой
как длину отрезка NL2, где L2 – точка пересечения плоскости
с касательной плоскостью
. Определим координаты точки L2:
x3=0, x4=0;
x1=0, x2=0; Þ
x1=A, x2=B. Следовательно, координаты точки L2:

x1=A, x2=B, x3=0, x4=0. |NL2|=
.

Рассмотрим нормальную кривизну

. Справедлива формула первой квадратичной формы поверхности:
, таким образом,

(40)

На торсе с касательной псевдоевклидовой плоскостью асимптотические линии есть прямолинейные образующие торса, а также линии v=u.

Нормальная кривизна кривой

в точке N зависит только от
, т.е. от направления в касательной плоскости.

Заключение

В работе исследуется геометрия поверхностей пространства Минковского.

В пространстве 1R4 рассматриваются торсы, то есть поверхности образованные касательными к некоторой кривой пространства Минковского, называемой ребром возврата для этого торса. Рассмотрен класс таких поверхностей, ребро возврата которых имеет соприкасающийся флаг вида {M, R1, 1R2, 1R3}.

Для торсов такого класса решены следующие задачи:

1. построен канонический репер торса;

2. получены деривационные формулы построенного канонического репера;

3. определено понятие (n,k) – геодезических линий на торсе;

4. получена теорема о существовании (1,2)-, (2,3) – геодезических линий на исследуемом торсе;

5. вводится обобщение понятия асимптотических линий на поверхности пространства Минковского, находятся асимптотические линии на торсе рассматриваемого класса.

Результаты проводимого исследования докладывались на республиканской научно-практической конференции молодых ученых, аспирантов и студентов «Современные проблемы математического моделирования и новые образовательные технологии в математике» (Брест, 23 апреля 2009 года). На основании доклада будет напечатана статья в сборнике материалов конференции.

Список использованных источников

1. Атанасян, Л.С. Геометрия: учеб. пособие в 2 ч./ Л.С. Атанасян, Г.Б. Гуревич. – М.: Просвещение, 1976. – Ч.2. – 488 с.

2. Базылев, В.Т. Геометрия: в 2 т./ В.Т. Базылев, К.И. Дуничев. - М.: Просвещение, 1972. – Т.2. – 352 с.

3. Бакельман, И.Я. Введение в дифференциальную геометрию: учебное пособие/ И.Я. Бакельман, А.Л. Вернер, Б.Е. Кантор. – М.: Наука, 1973. – 437 с.

4. Матвеев, Н.М. Дифференциальные уравнения: учеб. пособие для студ. пед. ин-тов по физ. – мат. спец./ Н.М. Матвеев. – М.: Просвещение, 1988. – 464 с.

5. Погорелов, А.В. Геометрия: учебник для студентов математических специальностей университетов и пед. институтов/ А.В. Погорелов. – М.: Наука, 1974. – 173 с.

6. Позняк, Э.Г. Геометрия: учеб. пособие/ Э.Г. Позняк, Е.В. Шикин. - М.: изд-во МГУ, 1990. – 384 с.

7. Рашевский, П.К. Курс дифференциальной геометрии/ П.К. Рашевский. – М.: Просвещение, 1982. – 220 с.

8. Рашевский, П.К. Риманова геометрия и тензорный анализ/ П.К. Рашевский. – М.: Наука, 1964. – 538 с.

9. Тайманов, И.А. Лекции по дифференциальной геометрии/ И.А.Тайманов. – Ижевск: Институт компьютерных исследований, 2002. – 176 с.

10. Фиников, С.П. Дифференциальная геометрия: курс лекций для мат. ф-та МГУ/ М.С. Фиников. – М.: московский университет, 1961. – 150 с.

11. Шварц, Д. Дифференциальная геометрия и топология/ Д. Шварц. – М.: Мир, 1970. – 224 с.