Смекни!
smekni.com

Систематичний відбір (стр. 14 из 14)

(1)

2. Дисперсія середнього значення систематичної вибірки визначається формулою (2)

(2)

де дисперсія одиниць, які належать одній систематичній вибірці визначається формулою (3),

(3)

а дисперсія популяції визначається формулою (4)

(4)

3. Середнє значення для систематичної вибірки більш точне, ніж середнє для простої випадкової вибірки


тоді і тільки тоді, коли справедлива нерівність (5)

. (5)

4. Дисперсія середнього значення систематичної вибірки може визначатись й формулою (6)

, (6)

де

- коефіцієнт кореляції між парами одиниць, що належать до однієї й тієї самої систематичної вибірки.

(7)

5. Дисперсія середнього значення систематичної вибірки може ще визначатись формулою (8)

, (8)

де дисперсія одиниць, що належать до однієї й тієї самої страти визначається формулою (9)

. (9)

Величина

. (10)

є коефіцієнтом кореляції між відхиленнями від середнього значення для страти по всім парам одиниць, що належать до однієї й тієї ж систематичної вибірки.

Зауважимо, що формули 2, 6, 8 - еквівалентні

6. Якщо в популяції одиниці розташовані навмання розглянемо всі

скінчених популяцій, що утворюються за допомогою
перестановок деякого набору чисел
. Тоді в середньому по всім цим скінченим популяціям справедлива формула (11)

. (11)

Тобто, коли одиниці вибірки розташовані випадково систематичний відбір в середньому рівносильний простому випадковому відбору.

Якщо між деякими характеристиками популяції наявна лінійна залежність, то справедлива нерівність (12).

. (12)

Тобто, стратифікований відбір точніший за систематичний відбір, який в свою чергу точніший простого випадкового відбору.

В своїй роботі я порівнювала точність систематичного відбору, простого випадкового та стратифікованого відбору, користуючись програмою StatVillage.

StatVillage – це гіпотетичне місто, яке складається з окремих домогосподарств і використовується як база даних для студентів та аспірантів, що вивчають вибіркові методи.

Дані домогосподарств для StatVillage обирались навмання з результатів перепису сімей, що мешкали у місті Ванкувері, Британській Колумбії, Канаді у 1991 році. Сам перепис населення проходив шляхом анонімного анкетування. Бралися до уваги наступні характеристики:

· демографічні показники (розмір домогосподарства та його склад за віком та статтю);

· показники доходу (зайнятість, інвестиції, валові витрати, різні доходи домогосподарств та інші);

· житлові характеристики (тип житла, рік побудови, своє житло чи орендоване, оціночна вартість, щомісячні витрати на розміщення та інші);

· характеристика двох членів сім’ї, які відповідають за добробут сім’ї (вік, стать, професія, рідна мова, освіта, зайнятість і т.д;)

Домогосподарства були розташовані згідно з загальним доходом від найбільшого до найменшого.

Існують три конфігурації міста StatVillage: Maximal village – складається зі 128 блоків, Mini village – складається з 60 блоків, та Micro village – складається з 36 блоків.

Для того, щоб отримати дані з міста StatVillage, необхідно спочатку відмітити домогосподарства позначкою. Після чого натискаючи кнопку «Get the sample units», отримуємо код. Отриманий код містить стовпці, кожен з яких відповідає за окрему характеристику домогосподарства

Порівнювати точності систематичного, простого та стратифікованого відборів, я буду використовувати вибірки, добуті з 11 та 13 стовпців коду. Ці стовпці відповідають – загальним доходам домогосподарства (включають в себе заробітну плату, пенсії, дівіденти та відсотки за депозитами) та періоду побудови домогосподарства.

В результаті дослідження виявилося, що загальний дохід зменшується зі зростанням номеру домогосподарства. Логарифмічна регресія значуща. Для загального доходу систематичний відбір виявився точнішим за простий випадковий та стратифікований відбори.

При дослідженні періоду побудови домогосподарства виявилося, що будь-яка залежність відсутня. Лінійна регресія не значуща. Систематичний відбір виявився більш точним ніж стратифікований випадковий відбір, але менш точним у порівнянні з простим випадковим відбором. Але можна помітити, що дисперсії простої випадкової та систематичної відбірок відрізняються мало. Отже, коли одиниці вибірки розташовані випадково систематичний відбір майже рівносильний простому випадковому відбору.

Останню оцінку можна покращити, застосувавши стратифікований систематичний відбір. Для цього всю популяцію ділимо на 2 страти. З кожної страти здобуваємо систематичні вибірки. Всього комбінацій здобуття вибірок з обох страт – 64. Дисперсія середнього стратифікованої систематичної вибірки виявилась меншою за відповідну дисперсію звичайної систематичної вибірки. Отже стратифікований систематичний відбір є точнішим за простий випадковий та стратифікований відбори.

Ефективність систематичного відбору в порівнянні зі стратифікованим або простим випадковим відбором суттєво залежить від особливостей популяції. Існують такі популяції, в яких систематичний відбір дає високу точність, але є й такі, для яких простий випадковий відбір є більш точним ніж систематичний. В будь-якому випадку для того, щоб застосування систематичного відбору було ефективним, необхідно знати будову популяції, з якої проводиться відбір.

Систематичні вибірки зручно намічати та вилучати. У більшості досліджень як по штучним, так і по реальним популяціям, вони вигравали в точності у порівнянні зі стратифікованими випадковими вибірками. Недоліки систематичної вибірки полягають в тому, що її точність може виявитись невисокою, якщо існує несподівана періодичність, і в тому, що невідомий надійний метод оцінювання

за даними вибірки. Але не дивлячись на це, систематичний відбір рекомендований у наступних ситуаціях.

1. Якщо одиниці популяції розташовані в основному навмання або якщо стратифікування в популяції намічено досить слабо. В цьому випадку систематичний відбір застосовується, оскільки він зручний і не можна розраховувати на виграш в точності. Є вибіркові оцінки похибки, зміщення яких знаходиться у допустимих границях.

2. Якщо застосовується стратифікування з великим числом страт і систематична вибірка вилучається незалежно з кожній страти. В цьому випадку вплив прихованої періодичності має тенденцію нейтралізуватися і можна одержати оцінку похибки, яка заздалегідь перевищена. При іншому способі можна скористатися лише половиною страт та вилучити з кожної страти по дві систематичні вибірки з незалежним випадковим початком відліку. Такий спосіб забезпечує незміщену оцінку похибки.

3. При підвідборі одиниць. В цьому випадку виявляється, що у більшості практичних додатків можна отримати незміщену оцінку похибки вибірки.

4. При вибірковому вивчені популяцій з варіацією неперервного характеру за умови, що оцінка похибки вибірки звичайно не вимагається. Якщо проводиться ряд обстежень такого типу, то може виявитись достатнім перевіряти похибки вибірки лише від випадку до випадку. Йейтс (1948) вказує, що можна робити таку перевірку за допомогою додаткових спостережень.


СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

1. Кокрен У. Методы выборочного исследования. Пер. с англ. И.М. Сонина. Под ред. А.Г. Волкова. – М.: Статистика, 1976. – 440 с. с ил.

2. Черняк О.І. Техніка вибіркових досліджень. – К.: МІВВЦ, 2001. – 248 с.

3. Пархоменко В.М. Методи вибіркових обстежень. Навчальний посібник. – К.,2001. – 148 с.

4. Govindarajulu Z. “Elements of sampling theory and methods”

5. Sharon L. Lohr Sampling: Design and Analysis – Duxbury Press, 1999. – 253c.