Дисперсія систематичної вибірки дорівнює
Знайдемо середнє та дисперсію для всієї популяції:
Тепер знайдемо дисперсію одиниць, що належать до однієї й тієї самої страти:
,де
- число страт, - обсяг стратифікованої вибірки.Тоді дисперсія оцінки середнього для простої випадкової вибірки має вид:
,де
- обсяг простої випадкової вибірки.Дисперсія оцінки середнього для стратифікованої випадкової вибірки
,де
- число страт.Стратифікований випадковий відбір та систематичний відбір виявились набагато ефективнішими, ніж простий випадковий відбір, причому, як і очікувалось, систематичний відбір менш точний, ніж стратифікований випадковий відбір.
1.2 Порівняння систематичного відбору зі стратифікованим випадковим відбором
Ефективність систематичного відбору в порівнянні зі стратифікованим або простим випадковим відбором суттєво залежить від особливостей популяції. Існують такі популяції, в яких систематичний відбір дає високу точність, але є й такі, для яких простий випадковий відбір є більш точним ніж систематичний. Для деяких популяцій та деяких значень
дисперсія середнього систематичної вибірки, веде себе досить погано − вона може навіть зростати при збільшені обсягу вибірки . Тому важко вказати загальні умови, за яких рекомендовано застосовувати систематичний відбір. В будь-якому випадку для того, щоб його застосування було ефективним, необхідно знати будову популяції, з якої проводиться відбір.При дослідженні цієї проблеми існує два напрямки. При одному з них порівнюються різні типи відбору зі штучних сукупностей, для яких
є деякою простою функцією . При іншому − проводиться аналогічне порівняння для реальних популяцій.1.3 Популяції з «випадковим» порядком розміщення одиниць
Систематичний відбір, оскільки він зручний, застосовується іноді до популяцій, в яких одиниці дійсно розташовані навмання. Наприклад, так буває при відборі з картотеки, що складена в алфавітному порядку за прізвищами, якщо змінюється ознака, яка ніяк не пов’язана з прізвищем того, кого обстежують. В цьому випадку не буде ніякої тенденції чи стратифікування по
в розташуванні карток, ні кореляції між сусідніми одиницями.У такій ситуації ми могли б очікувати, що систематичний відбір буде, по суті, рівносильний простому випадковому відбору та буде мати ту саму дисперсію. Для конкретної скінченої популяції при заданих значеннях
і це не завжди вірно, тому що , яка має ступенів вільності, при малих досить нестійка і може виявитись як більше так і менше, ніж . Але існують дві теореми, які показують, що в середньому ці дисперсії рівні.Теорема 1.3.1. Розглянемо всі
скінчених популяцій, що утворюються за допомогою перестановок деякого набору чисел . Тоді в середньому по всім цим скінченим популяціям .Зауважимо, що
для усіх перестановок однакова.Ця теорема стверджує, що якщо перестановку, яка визначає порядок значень у деякій конкретній скінченій популяції, можна вважати обраною навмання із можливих
перестановок, то в середньому систематичний відбір еквівалентний простому випадковому відбору.При іншому підході скінчену популяцію вважають добутою навмання з деякої нескінченої надпопуляції, що має певні властивості. Теорема 1.3.1 відноситься не до будь-якої скінченої популяції, а до середнього по всім скінченим популяціям, які можуть бути добуті із даної нескінченої надпопуляції.
Позначимо через
- середнє по всім скінченним популяціям, які можуть бути добуті з даної надпопуляції.Теорема 1.3.2. Якщо змінні
добуті за допомогою випадкового відбору із надпопуляції, для якої , , .Головну роль відіграють дві умови:
1) всі
мають одне і теж середнє , тобто в їх змінах відсутній будь-який тренд;2) між значеннями
та у двох різних точках відсутня лінійна кореляція. Дисперсія може бути різною для різних .Доведення. Для будь-якої визначеної скінченої популяції
.Далі,
.Оскільки
та некорельовані , то .Отже,
Звідси
.Повертаючись до
позначимо через середнє значення ознаки для -тої систематичної вибірки. Для будь-якої визначеної скінченої популяції