Случаи, когда
– неабелева группа порядка простой нечетной экспоненты , и – монолитическая группа с цоколем , где – -группа, рассматриваются аналогично.Пусть для формации
выполнено условие 2) теоремы. Построим -значный -локальный спутник , принимающий следующие значения: , при , , при . Ясно, что .Рассмотрим
-кратно -насыщенную формацию , порожденную спутником . Пусть – минимальный -кратно -локальный спутник формации . Тогда так как , то, ввиду леммы 17, .Пусть
– произвольная собственная -кратно -насыщенная подформация формации , – ее минимальный -значный -локальный спутник. Тогда для любого . Кроме того, как нетрудно показать, имеет место включениеПоэтому
. Таким образом, – единственная максимальная -кратно -насыщенная подформация формации , т.е. является -неприводимой формацией.В силу леммы 11
-дефект -кратно -насыщенной формации равен 1. Но тогда -дефект -неприводимой формации равен 2.Пусть для формации
выполнено условие 3). Построим -локальный спутник – такой, что и для любого . Так как группа является -базисной, то всякая подформация из содержится в . Следовательно, формация по лемме 8 является -критической. Пусть теперь – такой -значный -локальный спутник, что и для любого . Снова применяя лемму 8, получаем, что формация является -критической и т.д. Построим -значный -локальный спутник такой, что и для любого . Опять применяя лемму 8, получим, что формация является -критической. Заметим также, что ввиду леммы 11 -дефект -кратно -насыщенной формации равен 1. Следовательно, -дефект -неприводимой формации равен 2. Теорема доказана.Дано решение проблемы описания
-кратно -насыщенных формаций -дефекта 2, поставленной А.Н. Скибой и Л.А. Шеметковым в работе «Кратно -локальные формации и классы Фиттинга конечных групп» (Матем. Труды. – 1999. – Т.2, №2. – С. 114-147, проблема 5). В частности, установлено внутреннее решеточное строение -приводимых формаций -дефекта 2; получено описание конечных групп, порождающих -неприводимые формации -дефекта 2.