1.3) монолитическая группа с цоколем и – -группа;
2) – неабелева группа, , а группа удовлетворяет одному из следующих условий:
2.1) -группа, где ;
2.2) элементарная абелева -группа, ;
2.3) подпрямое произведение групп изоморфных , где – такая монолитическая группа с цоколем , что – неабелева группа, ;
3) – -группа, формация имеет
-дефект 1, – -базисная группа, где , , а – такая монолитическая группа с цоколем , что выполнено одно из следующих условий:3.1) – группа Шмидта с , где – абелева -группа, и – простое число, ;
3.2) – неабелева группа, причем ;
3.3) – -группа.
Доказательство. Необходимость. Пусть
– -неприводимая формация -дефекта 2, – максимальная -кратно -насыщенная подформация формации с каноническим спутником . Заметим, что ввиду леммы 7 спутник является -кратно -локальным. Тогда является минимальной -кратно -насыщенной не -формацией. Пусть и – минимальные -кратно -локальные спутники формаций и соответственно. В силу замечания 2 [4] имеем , для всех .Применяя лемму 8, получим, что
, где – такая монолитическая группа с цоколем , что либо (, и – -критическая формация для всех , либо и – -критическая формация. По теореме 1 , где – минимальная -кратно -насыщенная ненильпотентная подформация формации , .Предположим, что
. Тогда найдется простое число . Пусть – группа порядка . Тогда . Так как – максимальная -кратно -насыщенная подформация формации и , то . Но формация является -неприводимой по условию теоремы. Противоречие. Следовательно, .Пусть
и – минимальные -кратно -локальные спутники формаций и соответственно. По лемме 9 формации и имеют такие внутренние -кратно -локальные спутники и , принимающие соответственно значения , при , , при , , при , и , при , , при , , при . Ввиду леммы 10 справедливо равенство .