Министерство образования Республики Беларусь
Учреждение образования
«Гомельский государственный университет
имени Франциска Скорины»
Математический факультет
Кафедра алгебры и геометрии
Допущена к защите
Зав. кафедрой Шеметков Л.А.
« » 2007 г.
Формации конечных групп
Курсовая работа
Исполнитель:
студент группы М-51 А.И. Рябченко
Научный руководитель:
к.ф.- м.н., старший преподаватель В.Г. Сафонов
Гомель 2007
Оглавление
Введение
Вспомогательные факты
Основные результаты
Заключение
ЛИТЕРАТУРА
Все рассматриваемые в работе группы предполагаются конечными. Кроме общепринятой терминологии [1–3], нам потребуются некоторые определения и обозначения работы [4].
Пусть
– некоторое непустое подмножество множества всех простых чисел; – дополнение к во множестве всех простых чисел. Формация называется -насыщенной, если ей принадлежит всякая группа , удовлетворяющая условию , где . Всякая формация считается 0-кратно -насыщенной. При формация называется -кратно -насыщенной [4], если , где все непустые значения -локального спутника являются -кратно -насыщенными формациями.Для любых двух
-кратно -насыщенных формаций и полагают , а , где – пересечение всех -кратно -насыщенных формаций, содержащих . Через обозначают решетку -кратно -насыщенных формаций, заключенных между и . Длину решетки обозначают и называют -дефектом формации . -Кратно -насыщенную формацию называют -приводимой, если она может быть представлена в виде решеточного объединения некоторых своих собственных -кратно -насыщенных подформаций в решетке . В противном случае формацию называют -неприводимой.Группа
называют критической, если – группа минимального порядка из для некоторых формаций и . Критическая группа называется -базисной, если у формации, ею порожденной, имеется лишь единственная максимальная подформация , причем .В работе [4] А.Н. Скибой и Л.А. Шеметковым была поставлена задача описания
-кратно -насыщенных формаций -дефекта (вопрос 5, [4]). Полученные нами теоремы 1–3 завершают описание -кратно -насыщенных формаций такого типа. В частности, теорема 1 и теорема 2 позволяют классифицировать -приводимые -кратно -насыщенные формации, имеющие -дефект , а в теореме 3 получено описание конечных групп, порождающих -неприводимые формации -дефекта 2 ( ). Отметим, что при решение данной задачи получено в работе [5].Следствием теоремы 3.4.3 работы [6] является
Лемма 1. Пусть – -кратно -насыщенная ненильпотентная формация. Тогда в имеется по крайней мере одна минимальная -кратно -насыщенная ненильпотентная подформация.
Доказательство следующей леммы аналогично доказательству леммы 20.4 [2].
Лемма 2. Пусть , и – -кратно -насыщенные формации, причем . Тогда если и соответственно -дефекты формаций и и , то .