II) Імовірність того, що абсолютна величина відхилення випадкової величини від свого математичного сподівання буде менше 2, можна обчислити за формулою:
РОЗДІЛ II
14) РОЗРАХУНКОВА РОБОТА №1 “СТАТИСТИЧНИЙ РОЗПОДІЛ ВИБІРКИ”
23 | 26 | 31 | 35 | 38 | 43 | 48 | 39 | 36 | 27 |
43 | 39 | 37 | 34 | 31 | 27 | 21 | 33 | 32 | 44 |
24 | 28 | 30 | 35 | 33 | 39 | 40 | 41 | 46 | 36 |
42 | 39 | 35 | 32 | 27 | 29 | 33 | 35 | 38 | 41 |
25 | 30 | 30 | 31 | 32 | 34 | 36 | 37 | 38 | 40 |
перший інтервал 21-25
Представити кожну вибірку у вигляді таблиці частот згрупованої вибірки, побудувати гістограму і полігон частот, записати емпіричну функцію розподілу і побудувати їх графік.
РОЗВ’ЯЗАННЯ
1) Складемо таблицю частот згрупованої вибірки:
Межі інтервалу xi xi+1 | Середина інтервалу xi0 | Частота ni | Накопичувальна частота Σni | Відносна частота ni/n | Накопичувальна відносна частота Σni/n |
21 25 | 23 | 4 | 4 | 0,08 | 0,08 |
25 29 | 27 | 6 | 10 | 0,12 | 0,20 |
29 33 | 31 | 12 | 22 | 0,24 | 0,44 |
33 37 | 35 | 11 | 33 | 0,22 | 0,66 |
37 41 | 39 | 11 | 44 | 0,22 | 0,88 |
41 45 | 43 | 4 | 48 | 0,08 | 0,96 |
45 49 | 47 | 2 | 50 | 0,04 | 1 |
2) Побудуємо гістограму частот:
3) Побудуємо полігон частот:
4) Емпірична функція розподілу визначається значеннями накопичувальних відносних частот:
5) Графік розподілу емпіричної функції:
6) Знайдемо методом творів вибіркову середню і вибіркову дисперсію по заданому розподілу вибірки об'єму n=50:
Середина інтервалу xi0 | 23 | 27 | 31 | 35 | 39 | 43 | 47 |
Частота ni | 4 | 6 | 12 | 11 | 11 | 4 | 2 |
6.1) Складемо заповнимо таблицю:
хi0 | ni | Ui | ni×Ui | ni×Ui2 | ni×(Ui+1)2 |
23 | 4 | -2 | -8 | 16 | 4 |
27 | 6 | -1 | -6 | 6 | 0 |
31 | 12 | 0 | 0 | 0 | 12 |
35 | 11 | 1 | 11 | 11 | 44 |
39 | 11 | 2 | 22 | 44 | 99 |
43 | 4 | 3 | 12 | 36 | 64 |
47 | 2 | 4 | 8 | 32 | 50 |
39 | 145 | 273 |
6.2) Обчислимо умовні моменти 1-го і 2-го порядку:
6.3) Знайдемо крок h (різниця між сусідніми інтервалами):
.6.4) Обчислимо шукані, вибіркові, середню дисперсію, враховуючи що помилковий нуль
:3) РОЗРАХУНКОВА РОБОТА №2
“МЕТОД НАЙМЕНЬШИХ КВАДРАТІВ”
За наданими статистичними даними підібрати емпіричну функцію, якщо вона не задана, та:
1. Побудувати діаграму розсіювання.
2. Записати емпіричну функцію.
3. Записати систему нормальних рівнянь.
4. Скласти розрахункову таблицю.
5. Вирішити отриману систему й записати емпіричну функцію зі знайденими параметрами.
Уважаючи, що залежність між змінними
й має вигляд , знайти оцінки параметрів по наступних вибірках: 1 | 3 | 4 | 2 | 5 | 7 | 8 | 9 | |
80 | 90 | 120 | 100 | 110 | 150 | 160 | 130 |
РОЗВ’ЯЗАННЯ
По вибірці спостережень побудуємо в системі координат
и діаграму розсіювання, тобто побудуємо крапки: