(a) вскрытие механизма генезиса наблюдений, составляющих анализируемый
(b) временной ряд;
(c) построение оптимального прогноза для будущих значений временного ряда;
выработка стратегии управления и оптимизации анализируемых процессов.
· Говоря о генезисе образующих временной ряд наблюдений, следует иметь в виду (и по возможности модельно описать) четыре типа факторов, под воздействием которых могут формироваться эти наблюдения: долговременные, сезонные, циклические (или конъюнктурные) и случайные. При этом не обязательно в процессе формирования значений конкретного временного ряда должны одновременно участвовать факторы всех четырех типов. Успешное решение задач выявления и моделирования действия этих факторов является основой, базисным отправным пунктом для достижения конечных прикладных целей исследования, главные из которых упомянуты в предыдущем пункте.
· Приступая к анализу дискретного ряда наблюдений, расположенных в хронологическом порядке, следует в первую очередь убедиться, действительно ли в формировании значений этого ряда участвовали какие-либо факторы, помимо чисто случайных. При этом под «чисто случайными» понимаются лишь те случайные факторы, под воздействием которых генерируются последовательности взаимно не коррелированных и одинаково распределенных случайных величин, обладающих постоянными (не зависящими от времени) средними значениями и дисперсиями.
Если в результате проверки такой статистической гипотезы выяснилось, что имеющиеся наблюдения взаимно зависимы (и, возможно, неодинаково распределены), то приступают к подбору подходящей модели для этого ряда. Множество моделей, в рамках которого ведется этот подбор, ограничивается обычно следующими классами моделей: (а) классом стационарных временных рядов (которые используются, в основном, для описания поведения «случайных остатков»), (б) классом нестационарных временных рядов, которые являются суммой детерминированного тренда и стационарного временного ряда, (в) классом нестационарных временных рядов, имеющих стохастический тренд, который можно удалить последовательным дифференцированием ряда (т.е. путем перехода от ряда уровней к ряду разностей первого или более высокого порядка).
В рамках эконометрического анализа временных рядов макроэкономических показателей российской экономики, проводимого в настоящей работе, мы объединяем ряды, входящие в классы (а) и (б), в один класс, который, следуя общепринятой в последнее время практике[см., например, Maddala, Kim (1998),, называем классом TS-рядов (trend stationary series - ряды, стационарные относительно детерминированного тренда). Адекватным методом остационаривания временных рядов, принадлежащих классу (б), является вычитание из ряда детерминированного тренда. Напротив, для рядов, принадлежащих классу (в), адекватным методом остационаривания ряда является переход от ряда уровней к ряду разностей (первого или более высокого порядка).
· Стационарные (в широком смысле) временные ряды xt характеризуются тем, что их средние значения Ext, дисперсии Dxt и ковариации () = E[xt Ext)(xt+ Ext+)] не зависят от t, для которого они вычисляются. Взаимозависимости, существующие между членами стационарного временного ряда, как правило, могут быть адекватно описаны в рамках моделей авторегрессии порядка p (AR(p)-моделей), моделей скользящего среднего порядка q (MA(q)-моделей) или моделей авторегрессии со скользящими средними в остатках порядка p и q (ARMA(p, q)-моделей) [6].
· Временной ряд xt называется интегрированным (проинтегрированным) порядка k, если последовательные разности kxt этого ряда порядка k (но не меньшего порядка!) образуют стационарный временной ряд. Поведение таких рядов, в том числе рядов, содержащих сезонную компоненту, в эконометрических прикладных задачах достаточно успешно описывают с помощью моделей авторегрессии проинтегрированного скользящего среднего порядка p, k и q (ARIMA(p, k, q)-моделей) и некоторых их модификаций. К этому классу относится и простейшая модель стохастического тренда - процесс случайного блуждания (ARIMA(0, 1, 0)). Приращения случайного блуждания образуют последовательность независимых, одинаково распределенных случайных величин (“белый шум”). Поэтому процесс случайного блуждания называют также “проинтегрированным белым шумом”.
В настоящее время в класс интегрированных рядов порядка k включают также ряды, у которых разность порядка k (но не меньшего!) является процессом, стационарным относительно детерминированного тренда. В нашей работе используется именно такое определение. При этом если сам временной ряд является стационарным или стационарным относительно детерминированного тренда (TS-рядом), то он определяется как интегрированный ряд нулевого порядка.
При наличии сезонности получить стационарный ряд иногда возможно, переходя к разностям не соседних значений ряда, а значений, отстоящих на соответствующее число единиц времени. Например, при квартальных данных для достижения стационарности бывает достаточно перейти к последовательности разностей значений ряда, отстоящих на 4 единицы времени.
Подобрать модель для конкретного временного ряда {xt}, t = 1, 2,…, T это значит определить подходящее параметрическое семейство моделей в качестве допустимого множества решений, а затем статистически оценить параметры модели на основании имеющихся наблюдений x1, x2,…, xT. Весь этот процесс принято называть процессом идентификации модели, или просто идентификацией. Для правильной идентификации модели временного ряда необходимо решить вопрос о том, является ли исследуемый временной ряд стационарным, стационарным относительно детерминированного тренда (т.е. суммой детерминированных компонент и стационарного ряда) или в его составе содержится стохастический тренд. Решению этой задачи для ряда российских макроэкономических рядов посвящена основная часть настоящей работы.
В ситуациях, когда временные ряды {xt} и {yt}, t = 1, 2,…, T, являются исходными данными для построения регрессии y на x, причем воздействие единовременного изменения одной из них (x) на другую (y) растянуто (распределено) во времени, большой прикладной интерес представляют так называемые модели с распределенными лагами. В рамках этого специального класса моделей проводится, в частности, эконометрический анализ таких важных экономических явлений, как «процесс частичного приспособления», «модели адаптивных ожиданий» и др.
Важную роль в системах поддержки принятия экономических решений играет прогнозирование экономических показателей. Методы автопрогноза, основанные на анализе временных рядов, экстраполируют имеющийся в наличии ряд только на основании информации, содержащейся в нем самом. Такого рода прогноз может оказаться эффективным лишь в кратко- и, максимум, в среднесрочной перспективе. Серьезное решение задач долгосрочного прогнозирования требует использования комплексных подходов, и в первую очередь привлечения различных (в том числе, статистических) технологий сбора и анализа экспертных оценок.
Эффективный подход к решению задач кратко- и среднесрочного автопрогноза это прогнозирование, основанное на использовании «подогнанных» (идентифицированных) моделей типа ARIMA(p, k, q), включая, в качестве частных случаев, и модели AR-, MA- и ARMA.
Весьма широко распространены в решении прикладных задач кратко- и среднесрочного автопрогноза и так называемые адаптивные методы, позволяющие по мере поступления новых данных обновлять ранее сделанные прогнозы с минимальной задержкой и с помощью относительно несложных математических процедур.
Глава 2. Анализ временных рядов
2.1. Стационарные временные ряды и их основные характеристики
Поиск модели, адекватно описывающей поведение случайных остатков t анализируемого временного ряда xt, производят, как правило, в рамках класса стационарных временных рядов.
Определение 2.1. Ряд xt называется строго стационарным (или стационарным в узком смысле), если совместное распределение вероятностей m наблюдений такое же, как и для m наблюдений , при любых , и t1,…, tm.
Другими словами, свойства строго стационарного временного ряда не меняются при изменении начала отсчета времени. В частности, при m = 1 из предположения о строгой стационарности временного ряда xt следует, что закон распределения вероятностей случайной величины xt не зависит от t, а значит, не зависят от t и все его основные числовые характеристики, в том числе: среднее значение Ext = и дисперсия Dxt = 2.
Очевидно, значение определяет постоянный уровень, относительно которого колеблется анализируемый временной ряд xt, а постоянная величина характеризует размах этих колебаний. Поскольку закон распределения вероятностей случайной величины xt одинаков при всех t, то он сам и его основные числовые характеристики могут быть оценены по наблюдениям x1,…, xT. В частности:
оценка среднего значения, оценка дисперсии.
Автоковариационная функция (). Значения автоковариационной функции статистически оцениваются по имеющимся наблюдениям временного ряда по формуле
где = 1,… T 1, а вычислено по формуле (2.1).
Очевидно, значение автоковариационной функции при = 0 есть не что иное, как дисперсия временного ряда.
Автокорреляционная функция r(). Одно из главных отличий последовательности наблюдений, образующих временной ряд, от случайной выборки заключается в том, что члены временного ряда являются, вообще говоря, статистически взаимозависимыми. Степень тесноты статистической связи между двумя случайными величинами может быть измерена парным коэффициентом корреляции. Поскольку в нашем случае коэффициент измеряет корреляцию, существующую между членами одного и того же временного ряда, его принято называть коэффициентом автокорреляции. При анализе изменения величины r() в зависимости от значения принято говорить об автокорреляционной функции r(). График автокорреляционной функции иногда называют коррелограммой . Автокорреляционная функция (в отличие от автоковариационной) безразмерна, т.е. не зависит от масштаба измерения анализируемого временного ряда. Ее значения, по определению, могут колебаться от 1 до +1. Кроме того, из стационарности следует, что r() = r(), так что при анализе поведения автокорреляционных функций ограничиваются рассмотрением только положительных значений .