Смекни!
smekni.com

Изучение основ комбинаторики и теории вероятностей (стр. 3 из 17)

Для двоичной системы счисления (используются только две цифры: 0 или 1) получаем 25 различных числовых последовательностей. Для системы с основанием к и числом разрядов п соответственно получаем:

(1)

n -число позиций (разрядов); k-число элементов в каждой позиции (цифр).

В общем виде задача ставится следующим образом: имеется kти­пов предметов (количество предметов каждого типа неограниченно) и п позиций (ящиков, кучек, разрядов). Требуется определить, сколько раз­ных комбинаций можно составить, если в позициях предметы могут повторяться? Ответ дается формулой (1).

Пример. Сколько разных числовых последовательностей может содержать 10-разрядное слово в троичной системе счисления? В первый разряд можно поста­вить один из трех символов (0, 1 или 2), во второй разряд - также один из трех символов и т. д. Всего получаем З10 чисел.

В некоторых случаях имеются ограничения на количество разных предметов, которые можно помещать на позиции. Пусть, например, имеется п позиций и на каждую i-ю позицию можно поставить kiпред­метов. Сколько в этом случае существует разных расстановок предме­тов по позициям?

Легко обосновывается формула:

(2)

Пример. В эстафете 100+200+400+800 метров на первую пози­цию тренер может выставить одного из 3 бегунов, на вторую - одного из 5, на третью - одного из 6, на четвертую - единственного бегуна (на каждую позицию выставляются разные бегуны). Сколько вариантов рас­становки участников эстафетного забега может составить тренер?

В соответствии с формулой (2) получаем, что число вариантов рав­но:

.

1.3.3. Размещения без повторений

Рассмотрим задачу: Сколько разных числовых последовательностей, длины 5, можно за­писать с помощью десяти цифр при условии, что в числовых последовательностях не использу­ются одинаковые цифры?

Перенумеруем разряды:

1 2 3 4 5

В первый разряд можно поставить одну из 10 цифр (0,1,2,3,4,5,6,7,8,9). Независимо от того, какая цифра помещена в первый разряд, во втором можно поставить только одну из 9 цифр, в третий - одну из 8 цифр и т. д. Всего существует

различных числовых последовательностей, в каждой из которых нет двух одинаковых цифр.

В общем случае, если имеется k позиций и п разных предметов, при­чем каждый представлен в единственном экземпляре, то количество разных расстановок:

( 3)

В формуле (3) s

означает факториал числа s, т. е. произведение всех чисел от 1 до s. Таким образом, s
=
s.

Пример 1. Из группы в 25 человек требуется выбрать старосту, заместителя старосты и профорга. Сколько вариантов выбора руко­водящего состава группы? Старосту выбрать можно одним из 25 способов. Поскольку выбранный староста не может быть своим за­местителем, то для выбора заместителя старосты остается 24 ва­рианта. Профорга выбирают одним из 23 способов. Всего вариан­тов:

.

Пример 2. На дискотеку пришло 12 девушек и 15 юношей. Объявлен "бе­лый" танец. Все девушки выбрали для танцев юношей (и никто из них не отказался). Сколько могло образоваться танцующих пар?

Таким образом, размещениями называют комбинации, составленные из n различных элементов по m элементов, которые отличаются либо составом элементов, либо их порядком. Число всех возможных размещений

.

1.3.4. Перестановки без повторений

В предыдущих параграфах комбинации отличались как составом предметов, так и их порядком. Однако если в последней задаче юношей было бы тоже 12, то все комбинации отличались бы только порядком. Рассмотрим, сколько различных комбинаций можно получить, перестав­ляя п предметов.

Положим в (3)

, тогда получим

(4)

Пример. К кассе кинотеатра подходит 6 человек. Сколько суще­ствует различных вариантов установки их в очередь друг за другом? Расставим 6 человек произвольным образом и начнем их переставлять всеми возможными способами. Число полученных перестановок в со­ответствии с формулой (4) будет равно 6! = 720.

Перестановками называют комбинации, состоящие из одних и тех же n различных элементов и отличающиеся только порядком их расположения. Число всех возможных перестановок

Pn = n!,

где

.

Заметим, что удобно рассматривать 0!, полагая, по определению, 0! = 1.

1.3.5. Перестановки с повторениями

Иногда требуется переставлять предметы, некоторые из которых неотличимы друг от друга. Рассмотрим такой вариант перестано­вок, который называется перестановками с повторениями.

Пусть имеется п1предметов 1-го типа, n2 предмета 2-го, пкпред­метов

-го типа и при этом п1+ п2+...+ пк = п. Количество разных перестановок предметов

(5)

Для обоснования (5) сначала будем переставлять п предметов в предположении, что они все различны. Число таких перестановок равно п! Затем заметим, что в любой выбранной расстановке пере­становка n1 одинаковых предметов не меняет комбинации, анало­гично перестановка n2 одинаковых предметов также не меняет ком­бинации и т. д. Поэтому получаем выражение (5).

Пример. Найдем количество перестановок букв слова КОМ­БИНАТОРИКА. В этом слове 2 буквы «к», 2 буквы «о», 1 буква «м», 1 буква «б», 2 буквы «и», 1 буква «н», 2 буквы «а», 1 буква «т» и 1 буква «р».

Таким образом, число перестановок букв этого слова равно:

Р(2, 2, 1, 1, 2, 1, 2, 1, 1) = 13!/(2! 2! 2! 2!)= 13!/16.

1.3.6. Сочетания без повторений

Если требуется выбрать к предметов из п,и при этом порядок выби­раемых предметов безразличен, то имеем

.(6)

Сочетаниями называют комбинации, составленные из n различных элементов по k элементов, которые отличаются хотя бы одним элементом.

Формула (6) может быть получена следующим образом. Выберем по очереди к предметов из п. Число вариантов будет равно

. В этих расстановках к выбранных предмета имеют свои определенные позиции. Однако нас не интересуют в данном случае позиции выбран­ных предметов. От перестановки этих предметов интересующий нас вы­бор не меняется. Поэтому полученное выражение нужно разделить на

Пример 1. Из группы в 25 человек нужно выбрать троих для рабо­ты в колхозе. Если выбирать их последовательно, сначала первого, по­том второго, потом третьего, то получим

варианта. Но так как нас не интересует порядок выбора, а только состав выбранной бри­гады, поэтому полученный результат нужно разделить еще на 3!

Пример 2. В середине 60-х годов в России появились две лоте­реи, которые были названы "Спортлото": лотерея 5/36 и 6/49. Рассмотрим одну из них, например, 6/49. Играющий покупает билет, на котором имеется 49 клеточек. Каждая клеточка соответ­ствует какому-либо виду спорта. Нужно выделить (зачеркнуть) 6 из этих клеточек и отправить организаторам лотереи. После розыгрыша лоте­реи объявляются шесть выигравших номеров. Награждается угадав­ший все шесть номеров, пять номеров, четыре номера и даже угадав­ший три номера. Соответственно, чем меньше угадано номеров (видов спорта), тем меньше выигрыш.

Подсчитаем, сколько существует разных способов заполнения кар­точек "Спортлото" при условии, что используется лотерея 6/49. Ка­залось бы, заполняя последовательно номер за номером, получим:

. Но ведь порядок заполнения не имеет значения, тогда получаем:


Эту же задачу можно решить и другим способом. Выпишем все но­мера подряд и под выбираемыми номерами поставим 1, а под осталь­ными - 0. Тогда различные варианты заполнения карточек будут отли­чаться перестановками. При этом переставляются 6 предметов одного вида (единицы) и 49 - 6 = 43 предмета другого вида (нули), т. е. опять


Если все участники заполняют карточки по-разному, то в среднем один из примерно 14 миллионов угадает все 6 номеров. А сколько чело­век в среднем угадают 5 номеров?

Выберем один из угаданных номеров (

) и заменим его на один