МИНИСТЕРСТВО СЕЛЬСКОГОХОЗЯЙСТВА РФ
ДЕПАРТАМЕНТ НАУЧНО – ТЕХНОЛОГИЧЕСКОЙ
ПОЛИТИКИ И ОБРАЗОВАНИЯ
ФГОУ ВПО «ПРИМОРСКАЯ ГОСУДАРСТВЕННАЯ
СЕЛЬСКОХОЗЯЙСТВЕННАЯ АКАДЕМИЯ»
ИНСТИТУТ ЭКОНОМИКИ И БИЗНЕСА
Реферат
Тема: «Функция»
Выполнил: Ярмонтович Д.А.
Проверила:
УССУРИЙСК 2006
СОДЕРЖАНИЕ
· 1)Введние
· 2)Линейная функция
· 3)Квадратичная функция
· 4)Степенная функция
· 5)Показательная функция (экспонента)
· 6)Логарифмическая функция
· 7)Тригонометрическая функция
· -Функция синус
·
· -Функция тангенс
· -Функция котангенс
· 8)Обратная функция
· -Arcsinx
· -Arctgx
· 9)Список Литературы
введение
Функция- зависимость переменной у от переменной x, если каждому значению х соответствует единственное значение у.
Переменная х - независимая переменная или аргумент.
Переменная у - зависимая переменная
Значение функции - значение у, соответствующее заданному значению х.
Область определения функции- все значения, которые принимает независимая переменная.
Область значений функции (множество значений)- все значения, которые принимает функция.
Функция является четной - если для любого х из области определения функции выполняется равенство f(x)=f(-x)
Функция является нечетной - если для любого х из области определения функции выполняется равенство f(-x)=-f(x)
Возрастающая функция - если для любых х1и х2, таких, что х1< х2, выполняется неравенство f(х1)<f(х2)
Убывающая функция - если для любых х1и х2, таких, что х1< х2, выполняется неравенство f(х1)>f(х2)
Линейная функция.
Это функция вида
. Число называется угловым коэффициентом, а число - свободным членом. Графиком линейной функции служит прямая на координатной плоскости , не параллельная оси .Угловой коэффициент
равен тангенсу угла наклона графика к горизонтальному направлению - положительному направлению оси .График линейной функции - прямая
1. Область определения – все действительные числа.
2. Область значений – все действительные числа.
3. Если k=0, то график будет параллелен оси абсцисс и будет проходить через точку (0; b).
4. Линейная функция ни четная ни нечетная.
5. Функция возрастает если k>0,
Функция убывает если k<0.
6. Функция непрерывна.
Квадратичная функция.
Это функция вида
,Графиком
квадратичной функции служит парабола с осью, параллельной оси . При вершина параболы оказывается в точке .Парабола
( )В общем случае вершина лежит в точке
. Если , то "рога" параболы направлены вверх, если , то вниз..Парабола с вершиной в точке
( )1. Область определения квадратичной функции – вся числовая прямая.
2. При b¹0 функция не является четной и не является нечетной. При b=0 квадратичная функция – четная.
3.
4. Квадратичная функция непрерывна и дифференцируема во всей области определения.
5. Функция имеет единственную критическую точку
6. x=-b/(2a). Если a>0, то в точке x=-b/(2a) функция имеет минимум. При x<-b/(2a) функция монотонно убывает, при x>-b/(2a) монотонно возрастает.
a. Если а<0, то в точке x=-b/(2a) функция имеет максимум. При x<-b/(2a) функция монотонно возрастает, при x>-b/(2a) монотонно убывает.
b. Точка графика квадратичной функции с абсциссой x=-b/(2a) и ординатой y= -((b2-4ac)/4a) называется вершиной параболы.
7. Область изменения функции: при a>0 – множество значений функции [-((b2-4ac)/4a); +¥); при a<0 – множество значений функции (-¥;-((b2-4ac)/4a)].
8. График квадратичной функции пересекается с осью 0y в точке y=c. В случае, если b2-4ac>0, график квадратичной функции пересекает ось 0x в двух точках (различные действительные корни квадратного уравнения); если b2-4ac=0 (квадратное уравнение имеет один корень кратности 2), график квадратичной функции касается оси 0x в точке x=-b/(2a); если b2-4ac<0, пересечения с осью 0x нет.
a. Из представления квадратичной функции в виде (1) также следует, что график функции симметричен относительно прямой x=-b/(2a) – образа оси ординат при параллельном переносе r=(-b/(2a); 0).
b. График функции
9. f(x)=ax2+bx+c
10. (или f(x)=a(x+b/(2a))2-(b2-4ac)/(4a)) может быть получен из графика функции f(x)=x2следующими преобразованиями:
а) параллельным переносом r=(-b/(2a); 0);
б) сжатием (или растяжением) к оси абсцисс в а раз;
в) параллельным переносом r=(0; -((b2-4ac)/(4a))).
Степенная функция.
Это функция вида
, . Рассматриваются такие случаи:а). Если
, то . Тогда , ; если число - чётное, то и функция - чётная (то есть при всех ); если число - нечётное, то и функция - нечётная (то есть при всех ).