Смекни!
smekni.com

Исследование математических моделей оптимизации обслуживания сложных систем (стр. 2 из 5)

Таблица №1.1 - Расчёт по функции распределения.

Стратегия Kг Pвып Cпр Cпот
Стратегия A 0,83 0,68 1,41 0,3

Таблица №1.2 - Расчёт по статистическим данным.

Стратегия Kг Pвып Cпр Cпот
Стратегия A 0,83 0,65 1,33 0,28

2.2 Стратегия В.

Стратегия В — полное восстановление системы проводится либо в момент отказа, либо в заранее назначенный календарный момент времени. В начальный момент функционирования системы (t=0) планируется проведение предупредительной профилактики через случайное время распределенное по закону О(х). Если система не отказала до назначенного момента, то в этот момент дается предупредительная профилактика, средняя длительность которой равна Тpp. Если же отказ системы произошел ранее, то этот факт обнаруживается немедленно, так как, по предположению, индикация мгновенная:


Ф(х) = (2.1)

Поэтому в момент отказа начинается внеплановый аварийно-профилактический ремонт, который длится время Тапаппп). После проведения любой из перечисленных восстановительных работ система полностью обновляется. В момент окончания восстановительных работ последующая предупредительная профилактика перепланируется, и далее весь процесс обслуживания повторяется.

Постановка задачи. Определим случайный процесс характеризующий состояние исследуемой систему. Пусть Z > 0, тогда x(t):

· E0, если в момент t система работоспособна и до отказа проработает время, большее или рав­ное z;

· E1, если в момент t система работоспособна и до отказа проработает время, меньшее z;

· E2, если в момент t в системе проводится вне­плановый аварийно-профилактический ремой z;

· E3, если в момент t в системе проводится преду­предительная профилактика.

Рисунок 2 – Диаграмма переходов процесса x(t) (Стратегия В)

Определенный случайный процесс является регенерирующим (например, иомен там и регенерации будут моменты переходов в состоянии апериодическим, если предположить, что хотя бы од на из случайных величин время безотказной работы период предупредительны профилактик или у - время восстановления является не­прерывной случайной величиной. Можно утверждать, что при длительной эксплуатации характеристики качества функционирования выражаются дробно-линейным функцио­налом:

(2.2)

Предположим теперь, что функция F(y) известна лишь в отдельных точках, т. е.

F(y) Є Щ(n,y,р). (2.3)

Тогда задача заключается в определении гарантированного среднего выигрыша и функции G*(x), которая определяет периоды профилактики, обеспечивающие этот гарантированный выигрыш,

I(G*,F*) = max min I(G,F), где G Є Щ, F Є Щ(n,y,р). (2.4)

Гарантированный выигрыш определяется как выигрыш, получаемый при наилучшей функции распределения G*(x) и наихудшей функции распределения F*(y). Ес­ли функционал (2.2) выражает потери, то необходимо брать максимум по F Є Щ(n,y,р) и минимум по G Є Щ.

Расчёт по статистическим данным:

Методика определения минимаксных периодов проведения плановых предупредительных профилактик гарантированных значений показателей качества функционирования:

Исходные данные для расчета :

· вектор y = (y0=0,y1,y2,…,yn) и вектор р = (р0=0, р1, р2,…, рn);

· средняя длительность плановой предупредительной профилактики Тpp;

· средняя длительность внепланового аварийно-профилактического ремонта Тap;

· потери за единицу времени при проведении плановой предупредительной профилактики Сpp ;

· потери за единицу времени при проведении внепланового аварийно-профилактического ремонта Сap;

· прибыль C0 , получаемая за единицу времени безотказной работы системы;

· оперативное время Z работы системы, необходимое для выполнения задачи.

Формулы для расчёта минимаксных периодов профилактик и гарантированных значений показателей качества функционирования:

· Коэффициент готовности.Определяется номер k0 при котором достигает максимума выражение

, (2.5)

где k = 0,1,2,..., n.

Если максимум Ak достигается при k0<n, то плановые предупредительные профилактики следует проводить в момент ф0 = yk0+1-0. Если k0 = n, то ф0 = ∞, т.е. плановые предупредительные профилактики прово­дить нецелесообразно.

· Вероятность выполнения задачи.

Определяется номер k0 (0 ≤ k0 ≤ n), для которого yk0 – z ≤ 0, yk0+1 – z > 0.

Определяется максимальное значение отношения выражений (1.6) к (1.7).


, при ф [0 , yk+1 - z],

(2.6)

, при ф [ym - z , ym+1 - z].


, при k0 = 0,1,2, n (2.7)

Точка, при которой достигается максимум выражение определяет минимаксный период проведения предупредительных профилактик.

· Средние удельные потери.

Определяется номер kо, при котором достигается минимум выражения

. (2.8)

Точка ф0 = yk0+1-0 определяет сроки проведения плановых предупредительных профилактик.

· Средняя удельная прибыль.

Определяется номер kо, при котором достигается максимум выражения

(2.9)

Точка ф0 = yk0+1-0 определяет сроки проведения плановых предупредительных профилактик.

Расчёт по функции распределения времени безотказной работы системы:

Исходные данные для расчета:

· функция распределения времени безотказной работы системы F(t);

· средняя длительность плановой предупредитель­ной профилактики Тpp;

· средняя длительность внепланового аварийно-профилактического ремонта Тap;

· потери за единицу времени при проведении плановой предупредительной профилактики Сpp;

· потери за единицу времени при проведении внепланового аварийно-профилактического ремонта Сap;

· прибыль C0 , получаемая за единицу времени безотказной работы системы;

· оперативное время Z работы системы, необходимое для выполнения задачи.

· Коэффициент готовности :

(2.10)

· Средние удельные затраты :

(2.11)

· Средняя удельная прибыль :

(2.12)

· Вероятность выполнения задачи :

(2.13)

· Пример. Определим гарантированные значе­ния показателей качества

функционирования и сроки проведения плановых предупредительных профилактик системы, для которой заданы следующие исходные ха­рактеристики:

Tpp = 1 ч; Тap = 2 ч; сpp=1 ед/ч; сap=2 ед/ч; z = 25 ч; с0 = 5 ед/ч;

y = (y0 = 0;.y1 = l0; у2 = 20; у3 = 30; у4 = 40),

р = (р0 = 0; р1 = 0,1; р2 = 0.15; р3 = 0,3; р4 = 0,5).

· Коэффициент готовности

Вычислим величины Ak :

Таблица №2.1 – Величины коэффициента готовности

А0 А1 А2 A3 А4
0,891 0,938 0,950 0,852 0,922

Итак, получаем гарантированное значение коэффи­циента готовности, равное 0,952, если предупредитель­ные профилактики проводить через время ф0=40-0 ч.

· Вероятность выполнения задачи.

Определяем величину k0. Для данных, приведенных в таблице №2, k0=2(y2 – z < 0, y3 – z > 0).

Таблица №2.2 – Величины вероятности выполнения задачи

y = 0 y = 5 - 0 y = 5 + 0 y = 10 - 0 y = 10 + 0 у = 15
0 0,924 0,76 0,594 0,581 0,600

Максимум достигается при у = 5 - 0 и равен 0,924. Следовательно, профилактики нужно проводить через 5 - 0 ч. и гарантированное значения вероятности выполнения задачи будет равно 0,924.

· Средние удельные затраты.

Вычисляем величины средних удельных затрат.

Результаты сведены в таблицу №2.3 :

Таблица №2.3 – Величины средних удельных затрат

k = 0 k = 1 k = 2 k = 3 k = 4
0,144 0,0829 0,0775 0,0847 0,1333

Таким образом, получаем, что профилактику необхо­димо проводить через время 30 - 0 ч. и при этом га­рантированное значение удельных затрат равно 0,0775 ед/ч.