Смекни!
smekni.com

Исследование математических моделей оптимизации обслуживания сложных систем (стр. 3 из 5)

· Средняя удельная прибыль.

Вычисляем величины средней удельной прибыли.

Результаты сведены в таблицу №2.4:

Таблица №2.4 – Величины средней удельной прибыли

k = 0 k = 1 k = 2 k = 3 k = 4
4,37 4,61 4,674 4,677 4,55

Окончательно получаем, что профилактику необходимо проводить через время 40 - 0 ч., при этом гарантированное значение средней удельной прибыли равно 0,4677 ед/ч.

Результаты вычислений представлены в таблицах 2.5 и 2.6.

Таблица №2.5 - Расчёт по функции распределения.

Стратегия Kг Pвып Cпр Cпот
Стратегия B 0,95 0,92 0,46 0,07

Таблица №2.6 - Расчёт по статистическим данным.

Стратегия Kг Pвып Cпр Cпот
Стратегия B 0,94 0,92 0,48 0,07

2.3 Стратегия С

Стратегия С - восстановление системы проводится только в заранее назначенные моменты времени независимо от отказов системы.

Для исследуемой в настоящем параграфе системы предполагается, что время самостоятельного проявления отказа разно бесконечности, т. е. появившийся в системе отказ самостоятельно не проявляется. Для такой системы планируется проведение различных восстановительных работ (плановых), при которых отказы обнаруживаются, устраняются и предупреждаются.

Пусть при t=0, когда начинается эксплуатация системы, назначается проведение плановых восстанови­тельных работ через случайное время з, распределен­ное по закону G(x). Если к назначенному моменту з система не отказала (о>з, где о — время безотказной работы, распределенное по закону F(x)), то в этот момент проводится плановая предупредительная профи­лактика, которая полностью обновляет систему и сред­няя длительность которой равна Тpp. Если к назначен­ному моменту система отказала (о≤з), то в этот момент проводится плановый аварийно-профилактический ремонт, который полностью обновляет систему и длит­ся в среднем время Тap. После окончания плановых работ весь процесс обслуживания полностью повторяется.

Определим случайный процесс x(t), характеризующий состояние системы в момент t, x(t) :

· E0, если в момент t система работоспособна и проработает еще время, большее z≥0;

· E1, если в момент t система работоспособна, но до отказа проработает время, меньшее z,

· E2, если в момент t система простаивает в неработоспособном состоянии (скрытый отказ);

· E3, если в момент t в системе проводится плановый аварийно-профилактический ремонт;

· E4, если в момент t в системе проводится плановая предупредительная профилактика.

Рисунок 3 – Диаграмма переходов процесса x(t) (Стратегия С)

Описанный процесс является регенерирующим (например, моментами регенерации являются моменты попадания в состояние То), а в предположении, что время, ремонта - непрерывная случайная величина, и апериодическим. При длительной эксплуатации системы характеристики качества функционирования выражаются дробно-линейным функционалом.

Как и ранее, будем предполагать, что функция распределения времени безотказной работы F(х) известна лишь в отдельных точках. F(x) Є Щ(n,y,р). Задача состоит в том, чтобы определить гарантированную среднюю величину функционала I(G,F) , т. е.

I(G*,F*) = max min I(G,F), где G Є Щ, F Є Щ(n,y,р).

и функцию G*(x), на которой это значение достигается. Если функционал (2.2.1) характеризует потери, то по G Є Щ берется минимум, a по F Є Щ(n,y,р) - максимум.

Расчёт по статистическим данным :

Методика определения минимаксных периодов проведения плановых предупредительных профилактик и гарантированных значений показателей качества функционирования

Исходные данные для расчета:

· вектор y = (y0=0,y1,y2,…,yn) и вектор р = (р0=0, р1, р2,…, рn);

· средняя длительность плановой предупредитель­ной профилактики Тpp;

· средняя длительность внепланового аварийно-профилактического ремонта Тap;

· потерн за единицу времени при проведении пла­новой предупредительной профилактики Сpp ;

· потери за единицу времени при проведении вне­планового аварийно-профилактического ремонта Сap;

· прибыль C0 , получаемая за единицу времени без­отказной работы системы;

· оперативное время Z работы системы, необходи­мое для выполнения задачи;

· потери за единицу времени при наличии в систе­ме скрытого отказа Сp.

Формулы для расчета минимаксных периодов и гарантированных значений показателей качества функционирования :

· Коэффициент готовности.

Определяется номер k0, при котором достигается максимум из выражений :

, (3.1)

, (3.2)

при k = 0,1,2,..., n.

Если выражение (2.1) больше (2.2 ), то профилактики целесообразно проводить через время ф = yk0 + 0 и гарантированное значение коэффициента готовности равно (2.1). Если выражение (2.1) меньше (2.2 ), то про­филактики целесообразно проводить через время ф = yk0+1 - 0 и гарантированное значение коэффициента готовности равно правой части этого неравенства.

· Вероятность выполнения задачи.

Определяется номер k0(0≤k0≤n), для которого yk0 – z ≤ 0, yk0+1 – z > 0. Далее определяется максиму отношения выражения (2.3) к (2.4).

, при ф [0 , yk0+1 - z],

(3.3)


, при ф [ym – z , ym+1 – z].

Ф + Tап рk+1 + Tпп (1 – рk+1) , при ф [yk , yk+1], k = 0,1,2,…, n (3.4)

Точка ф, при которой достигается этот максимум, определяет минимаксный период проведения предупредительных профилактик, а значение этого максимума есть гарантированное значение вероятности выполнения задачи.

· Средние удельные затраты.

Определяется номер k0, при котором достигается ми­нимум из выражений :

(3.5)

(3.6)

Если при этом выражение (2.5) меньше (2.6), то предупредительную профилактику целесообразно проводить через время ф = yk0 + 0 и гарантированное значения средних удельных потерь равно (2.5). Если выражение (2.5) больше (2.6), то предупредительные профилактики целе­сообразно проводить через время ф = yk0+1 – 0 и гаран­тированное значение средних удельных потерь будет равно (2.6).

· Средняя удельная прибыль.

Определяется номер k0, при котором достигается максимум выражения:

(3.7)

(3.8)

Если при этом максимум совпадает с выра­жением (2.7), то предупреди­тельные профилактики целесообразно проводить через время ф = yk0 - 0. а гарантированное значение средней удельной прибыли равно первому выражению. Если максимум совпадает с выражением (2.8), то преду­предительные профилактики целесообразно проводить через время ф = yk0+1 - 0, а гарантированное значение средней удельной прибыли равно этому второму выра­жению при k=k0.

Расчёт по функции распределения времени безотказной работы системы :

Исходные данные для расчета:

· функция распределения времени безотказной работы системы F(t);

· средняя длительность плановой предупредитель­ной профилактики Тpp;

· средняя длительность внепланового аварийно-профилактического ремонта Тap;

· потерн за единицу времени при проведении пла­новой предупредительной профилактики Сpp ;

· потери за единицу времени при проведении вне­планового аварийно-профилактического ремонта Сap;

· прибыль C0 , получаемая за единицу времени без­отказной работы системы;

· оперативное время Z работы системы, необходи­мое для выполнения задачи;

· потери за единицу времени при наличии в систе­ме скрытого отказа Сp.

· Коэффициент готовности :

(3.9)

· Средние удельные затраты :

(3.10)

· Средняя удельная прибыль :

(3.11)

· Вероятность выполнения задачи :

(3.12)

Пример. Определим гарантированные значения показателей качества функционирования и сроки прове­дения плановых предупредительных профилактик систе­мы, для которой заданы следующие исходные харак­теристики:

Tpp = 1 ч; Тap = 2 ч; сpp=1 ед/ч; сap=2 ед/ч; z = 25 ч; с0 = 5 ед/ч;

Сp = 2 ед/ч;

y = (y0 = 0;.y1 = l0; у2 = 20; у3 = 30; у4 = 40),

р = (р0 = 0; р1 = 0,1; р2 = 0.15; р3 = 0,3; р4 = 0,5).

· Коэффициент готовности.

Значения (3.1) и (3.2) для различных k сведены в таблицу №3.1:

Таблица №3.1 – Величины коэффициента готовности

k = 0 k = 1 k = 2 k = 3 k = 4
0 0,818 0,807 0,822 0,821 0,783 0,736 0,71 0,702 0

Итак, получили, что предупредительную профилактику целесообразно проводить через время ф =20 - 0 ч. и гарантированное значение коэффициента готовности равно 0,822.