Смекни!
smekni.com

Исследование математических моделей оптимизации обслуживания сложных систем (стр. 4 из 5)

· Вероятность выполнения задачи.

Определим величину k0. В рассматриваемом случае k0=2.

Далее определяем величины отношений в точках ви­да уk ± 0 ,уk - z. Результаты сведены в таблицу №3.2:


Таблица №3.2 – Величины вероятности выполнения задачи

y=0 y=5 - 0 y=5 + 0 у=10 - 0 у =10 + 0 у=20 - 0 y=20+0
0 0.70 0.57 0.54 0,53 0,52 0,40

Максимум вероятности 0,7 достигается при ф =5 - 0 ч.

· Средние удельные затраты.

Вычисляем величины средних удельных затрат при различных k. Результаты сведены в таблицу №3.3.

Таблица №3.3 – Величины средних удельных затрат

k = 0 k = 1 k = 2 k = 3 k = 4
∞ 0,378 0,383 0.369 0,394 0.526 0,630 0,783 0,833 ∞

Таким образом, результаты расчета показывают, что предупредительную плановую профилактику целесооб­разно проводить через время ф = 20 - 0 ч. и при этом гарантированное значение средних удельных потерь будет равно 0,369 ед/ч.

· Средняя удельная прибыль.

Вычисляем значения средней удельной прибыли для различных k. Результаты сведены в таблицу №3.4:

Таблица №3.5 – Величины средней удельной прибыли

k = 0 k = 1 k = 2 k = 3 k = 4
<0 3,72 3,70 3,84 3,80 8,48 3,48 0,30 0,29 <0

Итак, результаты расчета показывают, что предупредительные профилактики целесообразно проводить через время ф = 20 - 0 ч и при этом гарантированное значение средней удельной прибыли равно 3,84 ед/ч.

Результаты вычислений представлены в таблицах 3.6 и 3.7.

Таблица №3.6 - Расчёт по функции распределения.

Стратегия Kг Pвып Cпр Cпот
Стратегия C 0,89 0,71 3,70 0,38

Таблица №3.7 - Расчёт по статистическим данным.

Стратегия Kг Pвып Cпр Cпот
Стратегия C 0,80 0,70 3,95 0,37

2.4 Стратегия D

Стратегия D — полное восстановление системы проводится либо в момент самостоятельного прояв­ления отказа, либо в заранее назначенный календарный момент времени.

Пусть в начальный момент Ј=0 начинается эксплуатация новой системы, у которой время безотказной работы о распределено по некоторому закону F(у)=Р { о < у). В момент t=0 планируется проведение плановой предупредительной профилактики через случайное время з, распределенное по некоторому закону G(x). Если к назначенному моменту система не отказала, то проводится плановая, предупредительная профилактика, которая длится в среднем время Тап и которая полностью обновляет систему. Если к назначенному моменту cсистема отказала, но отказ не проявился, то факт отказа обнаруживается в назначенный момент и начинается плановый аварийно-профилактический ре­монт, средняя длительность которого равна Тап и который также полностью обновляет систему. Наконец, если система отказала, и отказ проявился до назначенного момента з, то в момент обнаружения отказа начинается внеплановый аварийно-профилактический ремонт, средняя длительность которого равна Тап и после проведения, которого система обновляется полностью. Пос­ле окончания любой восстановительной работы система обновлена, и весь процесс обслуживания повторяется независимо от прошлого.

Постановка задачи. Определим случайный процесс х(г), характеризующий состояние системы в момент t. Пусть z ≥0, тогда x(t) :

· E0, если в момент t система работоспособна и еще проработает время, большее z;

· E1, если в момент t система работоспособна, но до отказа проработает время, меньшее z;

· E2, если в момент t система простаивает в неработоспособном состоянии (скрытый отказ);

· E3, если в момент t в системе проводится внеплановый аварийно-профилактический ремонт;

· E4, если в момент t в системе проводится плановый аварийно-профилактический ремонт;

· E5, если в момент t в системе проводятся пла­новая предупредительная профилактика.


Рисунок 4 – Диаграмма переходов процесса x(t) (Стратегия D)

Расчёт по статистическим данным :

Исходные данные для расчета:

· вектор y = (y0=0,y1,y2,…,yn) и вектор р = (р0=0, р1, р2,…, рn);

· средняя длительность плановой предупредитель­ной профилактики Тpp;

· средняя длительность внепланового аварийно-профилактического ремонта Тap;

· потерн за единицу времени при проведении плановой предупредительной профилактики Сpp ;

· потери за единицу времени при проведении внепланового аварийно-профилактического ремонта Сap;

· прибыль C0 , получаемая за единицу времени без­отказной работы системы;

· оперативное время Z работы системы, необходимое для выполнения задачи;

· потери за единицу времени при наличии в системе скрытого отказа Сp.

· Коэффициент готовности.

(4.1)

(4.2)

(4.3)

· Вероятность выполнения задачи.

(4.4)

(4.5)

(4.6)

· Средние удельные затраты.

(4.7)

(4.8)

(4.9)

· Средняя удельная прибыль.

(4.10)

(4.11)

(4.12)

Расчёт по функции распределения времени безотказной работы системы :

Исходные данные для расчета:

· функция распределения времени безотказной работы системы F(t);

· средняя длительность плановой предупредительной профилактики Тpp;

· средняя длительность внепланового аварийно-профилактического ремонта Тap;

· потерн за единицу времени при проведении плановой предупредительной профилактики Сpp ;

· потери за единицу времени при проведении внепланового аварийно-профилактического ремонта Сap;

· прибыль C0 , получаемая за единицу времени без­отказной работы системы;

· оперативное время Z работы системы, необходи­мое для выполнения задачи;

· потери за единицу времени при наличии в систе­ме скрытого отказа Сp.

· Коэффициент готовности :

(4.13)

- среднее время пребывания системы в состоянии Ei за период между соседними точками регенерации процесса x(t).

- сдняя длительность этого процесса.

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

· Средние удельные затраты :

(4.20)

· Средняя удельная прибыль :

(4.21)

· Вероятность выполнения задачи :

(4.22)

Результаты вычислений представлены в таблицах 4.1 и 4.2

Таблица №4.1 - Расчёт по функции распределения.

Стратегия Kг Pвып Cпр Cпот
Стратегия D 0,91 0,90 0,23 0,01

Таблица №4.2 - Расчёт по статистическим данным.

Стратегия Kг Pвып Cпр Cпот
Стратегия D 0,9 0,89 0,24 0,01

3 Заключение

В итоге работы, были изучены математические методы оптимизации обслуживания систем. Оптимизация обслуживания рассчитывалась по четырём критериям :

· Коэффициент готовности

· Средние удельные потери

· Средняя удельная прибыль

· Вероятность выполнения задачи

Было произведено написание, и отладка программного обеспечения для расчёта времени проведения предупредительной профилактики (для двух стратегий обслуживания). Программа имеет графический интерфейс. В программе реализован выбор стратегий обслуживания, вывод и заполнение данных, вывод результатов вычислений.