1) , ;
2) и непрерывны на ;
3) непрерывна на и при изменении от до не выходит за пределы отрезка ,
то .
Пусть
– какая-то первообразная от , тогда . Согласно формуле Ньютона – Лейбница, получим соответствующий определенный интеграл: . Но, как было показано в п. 5.4, в неопределенном интеграле можно сделать замену переменной , тогда . В этом случае соответствующий определенный интеграл будет иметь вид: .У обоих определенных интегралов правые части равны, следовательно, равны и левые части:
,что и требовалось доказать.
Из доказанной теоремы следует, что при замене переменной в определенном интеграле должны поменяться пределы интегрирования, и обратная замена здесь уже не нужна, так как и при старой и при новой переменной в ответе получается одно и то же число.
4. Интегрирование по частям в определенном интеграле
Пусть даны функции
и , которые непрерывны со своими производными на . Составим их произведение и продифференцируем его: .Возьмем от обеих частей полученного равенства определенные интегралы:
Но
, , . Следовательно, , откуда: . Так же как и в неопределенном интеграле, данная формула требует правильного выбора множителей и .5. Длина дуги кривой в прямоугольных координатах
При вычислении длины кривой линии может быть использована та же методика, что и при вычислении площадей криволинейных трапеций, то есть кривую разбивают на такие малые участки, длину которых можно посчитать геометрическими методами.
Определение. Длиной дуги кривой линии называют предел, к которому стремится длина вписанной в нее ломаной линии при неограниченном увеличении числа ее звеньев и при стремлении длины наибольшего звена к нулю.
Итак, пусть кривая линия
описывается функцией на отрезке . При этом пусть непрерывна на этом отрезке вместе со своей производной . Разобьем кривую на частичных дуг точками . Соединив начало и конец каждой частичной дуги хордой, получим в результате вписанную ломаную линию, длина которой равна сумме длин ее звеньев: .Обозначим:
, ,…, ,…, . Кроме того, , ,…, ,…, . В таком случае можно рассматривать как гипотенузу прямоугольного треугольника и поэтому .Согласно теореме Лагранжа о среднем
, где ,следовательно,
.Отсюда длина ломаной линии равна
Переходя к пределу в данной интегральной сумме, когда число звеньев ломаной стремится к бесконечности, а длина наибольшего звена стремится к нулю, получаем длину кривой линии в прямоугольной системе координат:
.Данный интеграл существует, поскольку по условию производная
непрерывна.Из полученной формулы можно получить выражение для дифференциала дуги, которое используется как в математике, так и в некоторых задачах теоретической механики. Пусть положение правого конца кривой линии является переменной величиной, тогда ее длина будет функцией точки, в которой она заканчивается, то есть
.Возьмем производную данного интеграла по переменному верхнему пределу (п. 1.):
.Отсюда следует, что
6. Длина дуги кривой при ее параметрическом задании
Рассмотрим теперь случай, когда кривая, длину которой необходимо вычислить, задана параметрически, то есть
при этом изменение от до приводит к изменению от до . Пусть функции и непрерывны вместе со своими производными на отрезке и при этом . Тогда , а . Подставим значение данной производной и дифференциала в формулу для длины дуги в прямоугольной системе координат (п. 5): .В случае пространственной кривой ее параметрическое задание будет выглядеть следующим образом: