Нижняя граница для множества
остается равной 47. Для всех маршрутов множества из города A мы не перемещаемся в город D. В матрице это обозначается выставлением в ячейку (1, 4) знака ∞. В этом случае выход из города A добавляет к оценке нижней границы по крайней мере наименьший элемент первой строки. φ ( ) = 47 + 10.В матрице, соответствующей
полагаем c14= ∞.1 | 2 | 3 | 4 | 5 | 6 | |
1 | ∞ | 11 | 27 | ∞ | 14 | 10 |
2 | 1 | ∞ | 15 | 0 | 29 | 24 |
3 | 15 | 13 | ∞ | 35 | 5 | 0 |
4 | 0 | 0 | 9 | ∞ | 2 | 2 |
5 | 2 | 41 | 22 | 43 | ∞ | 0 |
6 | 13 | 0 | 0 | 4 | 0 | ∞ |
После проведения процедуры приведения с r1=10 получим новую нижнюю границу 57 + 10 = 67.
В матрице, соответствующей
, вычеркиваем первую строку и четвертый столбец и положим c41= ∞, чтобы предотвратить появления цикла 1→ 4 → 1. Получим новую платежную матрицу {c1ij}:1 | 2 | 3 | 5 | 6 | |
2 | 1 | ∞ | 15 | 29 | 24 |
3 | 15 | 13 | ∞ | 5 | 0 |
4 | ∞ | 0 | 9 | 2 | 2 |
5 | 2 | 41 | 22 | ∞ | 0 |
6 | 13 | 0 | 0 | 0 | ∞ |
Для приведения надо вычесть минимум по первому столбцу: h1=1. При этом нижняя граница станет равной 47+1 = 48. Сравнивая нижние границы
φ (
Рис. 1 Ветвление на первом шаге
Приведенная платежная матрица для
1 | 2 | 3 | 5 | 6 | |
2 | 0 | ∞ | 15 | 29 | 24 |
3 | 14 | 13 | ∞ | 5 | 0 |
4 | ∞ | 0 | 9 | 2 | 2 |
5 | 1 | 41 | 22 | ∞ | 0 |
6 | 12 | 0 | 0 | 0 | ∞ |
Далее продолжаем процесс ветвления. Найдем степени Θij нулевых элементов этой матрицы Θ21 =16, Θ36 = 5, Θ42 = 2, Θ56 = 2, Θ62 = 0, Θ63 =9, Θ65 = 2. Наибольшая степень Θ21. Затем множество
разбивается дуге (2, 1) на два новых и .В матрице для
вычеркиваем строку 2 и столбец 1. дуги (1, 4) и (2, 1) образуют связный путь (2, 1, 4), положим c42= ∞, чтобы предотвратить появления цикла 2→1→ 4 → 2.2 | 3 | 5 | 6 | |
3 | 13 | ∞ | 5 | 0 |
4 | ∞ | 9 | 2 | 2 |
5 | 41 | 22 | ∞ | 0 |
6 | 0 | 0 | 0 | ∞ |
Для приведения надо вычесть минимум по строке 4: r4=2. При этом нижняя граница станет равной 48+2 = 50.
Нижняя граница для
, полученная как на предыдущем шаге ветвления, равна 48 + 16 = 64. Сравнивая нижние границы φ ( ) = 64 и φ ( ) = 50 < 64 выбираем для дальнейшего разбиения подмножество маршрутов .Рис. 2 Ветвление на втором шаге
Приведенная платежная матрица для
2 | 3 | 5 | 6 | |
3 | 13 | ∞ | 5 | 0 |
4 | ∞ | 7 | 0 | 0 |
5 | 41 | 22 | ∞ | 0 |
6 | 0 | 0 | 0 | ∞ |
Степени Θij нулевых элементов этой матрицы Θ36 = 5, Θ45 = 0, Θ56 = 22, Θ62 = 13, Θ63 =7, Θ65 = 0. Наибольшая степень Θ56. Затем множество
разбивается дуге (2, 1) на два новых и .Нижняя граница для
равна 50 + 22 = 72. В матрице для вычеркиваем строку 5 и столбец 6 и полагаем c65= ∞. Получим матрицу:2 | 3 | 5 | |
3 | 13 | ∞ | 5 |
4 | ∞ | 7 | 0 |
6 | 0 | 0 | ∞ |
Для приведения надо вычесть минимум по строке 3: r3=5. При этом нижняя граница станет равной 50+5 = 55. Выбираем для дальнейшего разбиения подмножество маршрутов
.Рис. 3 Ветвление на третьем шаге
Приведенная платежная матрица для
2 | 3 | 5 | |
3 | 8 | ∞ | 0 |
4 | ∞ | 7 | 0 |
6 | 0 | 0 | ∞ |
Степени Θij нулевых элементов этой матрицы Θ35 = 8, Θ45 = 7, Θ62 = 8, Θ63 =7. Выбираем Θ35 = 8. Разбиваем
на и .Нижняя граница для
равна 55 + 8 = 64. В матрице для вычеркиваем строку 3 и столбец 5 и полагаем c63= ∞. Получим2 | 3 | |
4 | ∞ | 7 |
6 | 0 | ∞ |
Для приведения надо вычесть минимум по строке 4: r4=7. При этом нижняя граница станет равной 55+7 = 62. После приведения получим
2 | 3 | |
4 | ∞ | 0 |
6 | 0 | ∞ |
Из матрицы 2´2 получаем два перехода с нулевой длинной: (4, 3) и (6, 2).
Рис. 4 Ветвление на четвертом шаге
Рис. 5 Дерево ветвления с оценками
Полученный маршрутом коммивояжера z0 = (1, 4, 3, 5, 6, 2, 1) или (A-D-C-E-F-B-A).