Смекни!
smekni.com

Теоремы сложения и умножения вероятностей, вероятность появления хотябы одного события (стр. 3 из 4)

Если мы наблюдаем за сложным событием - например, выпадением чисел 1..6 на верхней грани игральной кости, то можно считать, что такое событие имеет множество исходов и для каждого из них вероятность составляет 1/6 при симметрии кости.

Если же кость несимметрична, то вероятности отдельных чисел будут разными, но сумма их равна 1.

Стоит только рассматривать итог бросания кости как дискретную случайную величину и мы придем к понятию распределения вероятностей такой величины.

Пусть в результате достаточно большого числа наблюдений за игрой с помощью одной и той же кости мы получили следующие данные:

Таблица 1

Грани 1 2 3 4 5 6 Итого
Наблюдения 140 80 200 400 100 80 1000

Подобную таблицу наблюдений за СВ часто называют выборочным распределением, а соответствующую ей картинку (диаграмму) - гистограммой.

Рис. 1.

Какую же информацию несет такая табличка или соответствующая ей гистограмма?

Прежде всего, всю - так как иногда и таких данных о значениях случайной величины нет и их приходится либо добывать (эксперимент, моделирование), либо считать исходы такого сложного события равновероятными.

С другой стороны - очень мало, особенно в цифровом, численном описании СВ. Как, например, ответить на вопрос: - а сколько в среднем мы выигрываем за одно бросание кости, если выигрыш соответствует выпавшему числу на грани?

Нетрудно сосчитать:

1·0.140+2·0.080+3·0.200+4·0.400+5·0.100+6·0.080= 3.48

То, что мы вычислили, называется средним значением случайной величины, если нас интересует прошлое.

Если же мы поставим вопрос иначе - оценить по этим данным наш будущий выигрыш, то ответ 3.48 принято называть математическим ожиданием случайной величины, которое в общем случае определяется как

{ 1}

где P(Xi) - вероятность того, что X примет свое i-е очередное значение.

Таким образом, математическое ожидание случайной величины (как дискретной, так и непрерывной) - это то, к чему стремится ее среднее значение при достаточно большом числе наблюдений.

Обращаясь к нашему примеру, можно заметить, что кость несимметрична, в противном случае вероятности составляли бы по 1/6 каждая, а среднее и математическое ожидание составило бы 3.5.

Поэтому уместен следующий вопрос - а какова степень асимметрии кости - как ее оценить по итогам наблюдений?

Для этой цели используется специальная величина - мера рассеяния - так же как мы "усредняли" допустимые значения СВ, можно усреднить ее отклонения от среднего. Но так как разности (Xi - Mx) всегда будут компенсировать друг друга, то приходится усреднять не отклонения от среднего, а квадраты этих отклонений. Величину

{ 2}

принято называть дисперсией случайной величины X.

Вычисление дисперсии намного упрощается, если воспользоваться выражением

{ 3}

т. е. вычислять дисперсию случайной величины через усредненную разность квадратов ее значений и квадрат ее среднего значения.

Выполним такое вычисление для случайной величины с распределением рис. 1.

Таблица 2

Грани(X) 1 2 3 4 5 6 Итого
X2 1 4 9 16 25 36
Pi 0.140 0.080 0.200 0.400 0.100 0.080 1.00
Pi·X2·1000 140 320 1800 6400 2500 2880 14040

Таким образом, дисперсия составит 14.04 - (3.48)2 = 1.930.

Заметим, что размерность дисперсии не совпадает с размерностью самой СВ и это не позволяет оценить величину разброса. Поэтому чаще всего вместо дисперсии используется квадратный корень из ее значения - т. н. среднеквадратичное отклонение или отклонение от среднего значения:

{ 4}

составляющее в нашем случае

. Много это или мало?

Сообразим, что в случае наблюдения только одного из возможных значений (разброса нет) среднее было бы равно именно этому значению, а дисперсия составила бы 0. И наоборот - если бы все значения наблюдались одинаково часто (были бы равновероятными), то среднее значение составило бы (1+2+3+4+5+6) / 6 = 3.500; усредненный квадрат отклонения - (1 + 4 + 9 + 16 + 25 + 36) / 6 =15.167; а дисперсия 15.167-12.25 = 2.917.

Таким образом, наибольшее рассеяние значений СВ имеет место при ее равновероятном или равномерном распределении.

Отметим, что значения Mx и SX являются размерными и их абсолютные значения мало что говорят. Поэтому часто для грубой оценки "случайности" данной СВ используют т. н. коэффициент вариации или отношение корня квадратного из дисперсии к величине математического ожидания:

Vx = SX/MX { 5}

В нашем примере эта величина составит 1.389/3.48=0.399.

Итак, неслучайная, детерминированная величина имеет математическое ожидание равное ей самой, нулевую дисперсию и нулевой коэффициент вариации, в то время как равномерно распределенная СВ имеет максимальную дисперсию и максимальный коэффициент вариации.

В ряде ситуаций приходится иметь дело с непрерывно распределенными СВ - весами, расстояниями и т. п. Для них идея оценки среднего значения (математического ожидания) и меры рассеяния (дисперсии) остается той же, что и для дискретных СВ. Приходится только вместо соответствующих сумм вычислять интегралы. Второе отличие - для непрерывной СВ вопрос о том какова вероятность принятия нею конкретного значения обычно не имеет смысла - как проверить, что вес товара составляет точно 242 кг - не больше и не меньше?

Для всех СВ - дискретных и непрерывно распределенных, имеет очень большой смысл вопрос о диапазоне значений. В самом деле, иногда знание вероятности того события, что случайная величина не превзойдет заданный рубеж, является единственным способом использовать имеющуюся информацию для системного анализа и системного подхода к управлению. Правило определения вероятности попадания в диапазон очень просто - надо просуммировать вероятности отдельных дискретных значений диапазона или проинтегрировать кривую распределения на этом диапазоне.

4.2 Взаимосвязи случайных событий

Вернемся теперь к вопросу о случайных событиях. Здесь методически удобнее рассматривать вначале простые события (может произойти или не произойти). Вероятность события X будем обозначать P(X) и иметь ввиду, что вероятность того, что событие не произойдет, составляет

{ 6}

Самое важное при рассмотрении нескольких случайных событий (тем более в сложных системах с развитыми связями между элементами и подсистемами) - это понимание способа определения вероятности одновременного наступления нескольких событий или, короче, - совмещения событий.

Рассмотрим простейший пример двух событий X и Y, вероятности которых составляют P(X) и P(Y). Здесь важен лишь один вопрос - это события независимые или, наоборот взаимозависимые и тогда какова мера связи между ними?

Оценим вначале вероятность одновременного наступления двух независимых событий. Элементарные рассуждения приведут нас к выводу: если события независимы, то при 80%-й вероятности X и 20%-й вероятности Y одновременное их наступление имеет вероятность всего лишь 0.8·0.2 = 0.16 или 16%.

Итак - вероятность наступления двух независимых событий определяется произведением их вероятностей:

{7}

Перейдем теперь к событиям зависимым. Будем называть вероятность события X при условии, что событие Y уже произошло условной вероятностью P(X/Y), считая при этом P(X) безусловной или полной вероятностью. Столь же простые рассуждения приводят к так называемой формуле Байеса

{8}

где слева и справа записано одно и то же - вероятности одновременного наступления двух "зависимых" или коррелированных событий.

Дополним эту формулу общим выражением безусловной вероятности события X:

{9}

означающей, что данное событие X может произойти либо после того как событие Y произошло, либо после того, как оно не произошло

- третьего не дано!

Формулы Байеса или т. н. байесовский подход к оценке вероятностных связей для простых событий и дискретно распределенных СВ играют решающую роль в теории принятия решений в условиях неопределенности последствий этих решений или в условиях противодействия со стороны природы, или других больших систем (конкуренции). В этих условиях ключевой является стратегия управления, основанная на прогнозе т. н. апостериорной (послеопытной) вероятности события

{10}

Прежде всего, еще раз отметим взаимную связь событий X и Y - если одно не зависит от другого, то данная формула обращается в тривиальное тождество. Кстати, это обстоятельство используется при решении задач оценки тесноты связей - корреляционном анализе. Если же взаимосвязь событий имеет место, то формула Байеса позволяет вести управление путем оценки вероятности достижения некоторой цели на основе наблюдений над процессом функционирования системы - путем перерасчета вариантов стратегий с учетом изменившихся представлений, т. е. новых значений вероятностей.