Смекни!
smekni.com

Центральная предельная теорема и ее доказательство через ряды Тейлора (стр. 2 из 2)

Следствием из ЦПТ является предельная теорема Муавра-Лапласа.

Предельная теорема Муавра — Лапласа.

Пусть

— событие, которое может произойти в любом из
независимых испытаний с одной и той же вероятностью
. Пусть
— число осуществлений события
в
испытаниях. Тогда
.

Иначе говоря, для любых вещественных

при
имеет место сходимость

Доказательство.

По-прежнему

есть сумма независимых, одинаково распределенных с. в., имеющих распределение Бернулли с параметром, равным вероятности успеха
:

Осталось воспользоваться ЦПТ.

Ниже я рассмотрю примеры использования ЦПТ.

Пример 1.

З а д а ч а. Монета подбрасывается 10000 раз. Оценить вероятность того, что частота выпадения герба отличается от вероятности более чем на одну сотую.

Р е ш е н и е. Требуется найти

, где
,
— число выпадений герба, а
— независимые с. в., имеющие одно и то же распределение Бернулли с параметром 1/2. Домножим обе части неравенства под знаком вероятности на
и поделим на корень из дисперсии
одного слагаемого.

Согласно ЦПТ или предельной теореме Муавра — Лапласа, последовательность

слабо сходится к стандартному нормальному распределению. Рассмотрим произвольную с. в.

, имеющую распределение
.

Пример 2.

Прекрасным примером ЦПТ в экономике может служить ее использование в страховом деле. В большинстве случаев конкретный вид распределения потерь (размеров отдельных требований о выплате страховых сумм) не играет существенной роли, поскольку сумма исков, предъявляемых страховщику (величина суммарного иска), обычно зависит только от средней величины и дисперсии убытка. Дело в том, что если количество страховых случаев значительно превышает единицу, то в силу центральной предельной теоремы распределение суммарного иска является нормальным распределением. Обозначив его дисперсию как DZ, а математическое ожидание (среднее значение суммарного иска) как <Z> = <N><Q>

- где <N>, <Q> - среднее значение числа страховых случаев и величины страховой выплаты, получаем следующее выражение для рисковой надбавки Тr:

Тr = [(Т0*a)/(<N>*<Q>)]*(<N>*DQ + <Q>2*DN) 0.5

- где DQ и DN -дисперсии величины страховой выплаты и количества страховых случаев.

В простейшем случае, когда все выплаты одинаковы (а, следовательно, их дисперсия равна нулю), имеем:

Тr = (Т0*a)/N0.5

Эта формула также дает неплохое приближение, если коэффициент вариации уровня страховых выплат значительно меньше единицы.

При включении в страховой полис нескольких независимых рисков ожидаемая величина страховых выплат в соответствии с теоремой о сложении вероятностей представляет собой сумму ожидаемых страховых выплат по каждому риску в отдельности, а рисковая надбавка вычисляется как среднеквадратичная величина всех рисковых надбавок.