Следствием из ЦПТ является предельная теорема Муавра-Лапласа.
Предельная теорема Муавра — Лапласа.
Пусть
— событие, которое может произойти в любом из независимых испытаний с одной и той же вероятностью . Пусть — число осуществлений события в испытаниях. Тогда .Иначе говоря, для любых вещественных
при имеет место сходимостьДоказательство.
По-прежнему
есть сумма независимых, одинаково распределенных с. в., имеющих распределение Бернулли с параметром, равным вероятности успеха :Осталось воспользоваться ЦПТ.
Ниже я рассмотрю примеры использования ЦПТ.
Пример 1.
З а д а ч а. Монета подбрасывается 10000 раз. Оценить вероятность того, что частота выпадения герба отличается от вероятности более чем на одну сотую.
Р е ш е н и е. Требуется найти
, где , — число выпадений герба, а — независимые с. в., имеющие одно и то же распределение Бернулли с параметром 1/2. Домножим обе части неравенства под знаком вероятности на и поделим на корень из дисперсии одного слагаемого.Согласно ЦПТ или предельной теореме Муавра — Лапласа, последовательность
слабо сходится к стандартному нормальному распределению. Рассмотрим произвольную с. в.
, имеющую распределение .Пример 2.
Прекрасным примером ЦПТ в экономике может служить ее использование в страховом деле. В большинстве случаев конкретный вид распределения потерь (размеров отдельных требований о выплате страховых сумм) не играет существенной роли, поскольку сумма исков, предъявляемых страховщику (величина суммарного иска), обычно зависит только от средней величины и дисперсии убытка. Дело в том, что если количество страховых случаев значительно превышает единицу, то в силу центральной предельной теоремы распределение суммарного иска является нормальным распределением. Обозначив его дисперсию как DZ, а математическое ожидание (среднее значение суммарного иска) как <Z> = <N><Q>
- где <N>, <Q> - среднее значение числа страховых случаев и величины страховой выплаты, получаем следующее выражение для рисковой надбавки Тr:
Тr = [(Т0*a)/(<N>*<Q>)]*(<N>*DQ + <Q>2*DN) 0.5
- где DQ и DN -дисперсии величины страховой выплаты и количества страховых случаев.
В простейшем случае, когда все выплаты одинаковы (а, следовательно, их дисперсия равна нулю), имеем:
Тr = (Т0*a)/N0.5
Эта формула также дает неплохое приближение, если коэффициент вариации уровня страховых выплат значительно меньше единицы.
При включении в страховой полис нескольких независимых рисков ожидаемая величина страховых выплат в соответствии с теоремой о сложении вероятностей представляет собой сумму ожидаемых страховых выплат по каждому риску в отдельности, а рисковая надбавка вычисляется как среднеквадратичная величина всех рисковых надбавок.