2. Случайная величина Х распределена нормально, причём её среднее квадратическое отклонение s неизвестно.
В этом случае с надёжностью g верхняя граница ошибки
где n – число испытаний; s – «исправленное» среднее квадратическое отклонение,
3. Случайная величина Х распределена по закону, отличному от нормального.
В этом случае при достаточно большом числе испытаний (n>30) с надёжностью, приближённо равной g, верхняя граница ошибки может быть вычислена по формуле (*), если среднее квадратическое отклонение s случайной величины Х известно; если же s неизвестно, то можно подставить в формулу (*) его оценку s – «исправленное» среднее квадратическое отклонение либо воспользоваться формулой (**). Заметим, что чем больше n, тем меньше различие между результатами, которые дают обе формулы. Это объясняется тем, что при
Из изложенного следует, что метод Монте-Карло тесно связан с задачами теории вероятностей, математической статистики и вычислительной математики. В связи с задачей моделирования случайных величин (в особенности равномерно распределённых) существенную роль играют также методы теории чисел.
Среди других вычислительных методов, метод Монте-Карло выделяется своей простотой и общностью. Медленная сходимость является существенным недостатком метода, однако, могут быть указаны его модификации, которые обеспечивают высокий порядок сходимости при определённых предположениях. Правда, вычислительная процедура при этом усложняется и приближается по своей сложности к другим процедурам вычислительной математики. Сходимость метода Монте-Карло является сходимостью по вероятности. Это обстоятельство вряд ли следует относить к числу его недостатков, ибо вероятностные методы в достаточной мере оправдывают себя в практических приложениях. Что же касается задач, имеющих вероятностное описание, то сходимостью по вероятности является даже в какой-то мере естественной при их исследовании.
Глава 3. Вычисление интегралов методом Монте-Карло.
§1. Алгоритмы метода Монте-Карло для решения интегральных уравнений второго рода.
Пусть необходимо вычислить линейный функционал
§2. Способ усреднения подынтегральной функции.
В качестве оценки определённого интеграла
где n – число испытаний;
Дисперсия усредняемой функции
где
Эти формулы для вычисления дисперсии применяют и при других способах интегрирования, когда усредняемая функция не совпадает с подынтегральной функцией.
В качестве оценки интеграла
где S – площадь области интегрирования; N – число случайных точек
Если вычислить площадь S трудно, то в качестве её оценки можно принять
где n – число испытаний.
В качестве оценки интеграла
Если вычислить объём трудно, то в качестве его оценки можно принять
Задача: найти оценку