Ниже рассматриваются необходимые и достаточные условия отрицательности корней характеристического уравнения линейной однородной системы с постоянными коэффициентами — критерий Гурвица (Рауса-Гурвица), а также частотный критерий Михайлова, являющийся геометрическим признаком, эквивалентным критерию Гурвица.
Определение. Полином
, где , , называется полиномом Гурвица, если все его корни имеют отрицательные вещественные части.Если полином
является полиномом Гурвица, то все .Составим
-матрицу Гурвица видаТеорема Гурвица (критерий Гурвица). Для того чтобы полином
являлся полиномом Гурвица, необходимо и достаточно, чтобы были положительны все главные диагональные миноры его матрицы Гурвица :Если степень полинома
сравнительно большая, то применение критерия Гурвица становится затруднительным. В этом случае для определения расположения корней полинома на комплексной плоскости иногда оказывается более удобным использование частотного критерия Михайлова.Определение. Пусть
, где , , . Кривая , называется годографом Михайлова функции .Критерий Михайлова непосредственно следует из леммы:
Лемма 2. Угол поворота в положительном направлении ненулевого вектора
при равен , где — число корней полинома с положительной вещественной частью с учетом их кратностей.Критерий Михайлова. Для того чтобы полином
, не имеющий чисто мнимых корней, являлся полиномом Гурвица, необходимо и достаточно, чтобы угол поворота в положительном направлении вектора при был бы равен .Замечание. Если полином
есть полином Гурвица степени , то вектор монотонно поворачивается в положительном направлении на угол , то есть годограф Михайлова, выходя из точки положительной полуоси , последовательно пересекает полуоси , проходя квадрантов.Рассмотрим уравнение (3) с периодическими коэффициентами, т. е.
, (4)где
. По формуле (5) предыдущей главы уравнение (4) имеет в рассматриваемом случае фундаментальную матрицу , где — неособая -периодическая непрерывная матрица, тем самым ограниченная вместе с обратной, — жорданова матрица, собственные числа которой — характеристические показатели уравнения (4). Из леммы 1 следует, что характеристические показатели играют при оценке фундаментальной матрицы ту же роль, что собственные числа , когда постоянна. Учитывая, что , где — мультипликаторы уравнения, получаем следующий результат:Теорема 3. Линейная однородная система с периодическими коэффициентами: 1) устойчива по Ляпунову тогда и только тогда, когда все ее мультипликаторы не превышают по модулю единицы, а равные единице по модулю либо простые, либо им соответствуют простые элементарные делители матрицы монодромии; 2) асимптотически устойчива тогда и только тогда, когда модули всех мультипликаторов меньше единицы.
Пример. Рассмотрим уравнение из примера п. 1.5:
Уравнение будем называть устойчивым по Ляпунову, асимптотически устойчивым или неустойчивым, если таковой является соответствующая ему линейная система. Мультипликаторы находятся из уравнения
: , где . Поэтому можно сделать вывод, что при оба мультипликатора вещественны и один из них по абсолютной величине больше единицы, а при мультипликаторы являются комплексно-сопряженными с модулями, равными единице. По теореме 3 при уравнение неустойчиво, а при оно устойчиво по Ляпунову, но не асимптотически.Как известно фазовый объем - объем в фазовом пространстве.
4. Одномерное движение частицы в потенциальном поле
Будем рассматривать автономную систему в векторной форме:
(2)где функция f(x) определена в
.Автономные системы обладают тем свойством, что если
— решение уравнения (2), то , , также решение уравнения (2). Отсюда в частности следует, что решение можно записать в виде . В геометрической интерпретации эта запись означает, что если две траектории уравнения (2) имеют общую точку, то они совпадают. При этом можно заметить, что траектория вполне определяется начальной точкой , поэтому можно везде считать .Пусть
— положение равновесия, т. е. . Для того чтобы точка была положением равновесия, необходимо и достаточно, чтобы . Предположим теперь, что траектория решения не является положением равновесия, но имеет кратную точку, т. е. существуют , такие, что . Так как — не положение равновесия, то . Поэтому можно считать, что при . Обозначим и покажем, что — -периодическая функция.