Некоторые приложения определенного интеграла в математике
Курсовая работа студента гр. МТ-21
Нургалиев А.З.
Павлодарский университет
Павлодар 2005 год.
1. Введение.
В курсовой работе рассмотрены вопросы некоторого приложения определенного интеграла. Цель: изучить актуальность применения определенного интеграла и широту его использования в математике, оценить ее практическую и теоретическую значимость.
При разработки данного вопроса, был также рассмотрен несобственный интеграл, как частный случай определенного интеграла, его определение и виды.
2. Определенный интеграл.
Пусть функция f(x) задана в некотором промежутке [a,b]. Разобьем этот промежуток произвольным образом на части, вставив между a и b точки деления:
Возьмем в каждом из частных промежутков
и составим сумму
Говорят, что сумма σ при λ→0 имеет (конечный) предел I, если для каждого числа ε>0 найдется такое число δ>0, что, лишь только λ<δ (т.е. основной промежуток разбит на части, с длинами
выполняется при любом выборе чисел
Записывают это так:
Этому определению «на языке ε-δ», как обычно, противопоставляется определение «на языке последовательностей». Представим себе, что промежуток [α,b] последовательно разбивается на части, сначала одним способом, затем – вторым, третьим и т.д. Такую последовательность разбиений промежутка на части мы будем называть основной, если соответствующая последовательность значений
Равенство (1) можно понимать теперь и в том смысле, что последовательность значений суммы σ, отвечающая любой основной последовательности разбиений промежутка, всегда стремится к пределу I, как бы ни выбирать при этом
Второе определение позволяет перенести основные понятия и предложения теории пределов и на этот новый предел.
Конечный предел I суммы σ при λ→0 называется определенным интегралом функции f(x) в промежутке от α до b и обозначается символом
в случае существования такого предела функции f(x) называется интегрируемой в промежутке [α,b].
Числа α и b носят название, соответственно, нижнего и верхнего пределов интеграла. При постоянных пределах определенный интеграл представляет собой постоянное число.
3. Несобственные интегралы.
Пусть f непрерывна на луче на луче
то этот предел обозначается
Несобственные интеграл вида
Здесь существенно, что особой точкой функции t является именно конец (левый или правый) отрезка [a,b]. Если особой точкой t(x) (как в разобранном выше примере) является внутренняя точка с интервала (a,b), то
Пример.
Вычислим
Пусть
Другим видом несобственного интеграла является интеграл
Этот интеграл существует (сходится), если существует:
Пример.
f(x) непрерывна на [0,1]. После замены
Несобственный интеграл может появится и при интегрировании по частям.
т.е.
где
4.1.Формула Валлиса.
Для вывода формулы Валлиса необходимо вычислить следующий интеграл:
Интегрируя по частям, найдём
Двойная подстановка обращает в нуль. Заменяя
откуда рекуррентная формула:
по которой интеграл
если же m=2n+1, то
Такие же точно результаты получаются и для
Для более короткой записи найденных выражений воспользуемся символом m!!(произведение натуральных чисел, не превосходящих m и одной с ним чётности). Тогда можно будет написать
|