Раздел 2. Численные методы
1.1. Постановка задачи
При решении ряда задач физики, механики и техники возникает необходимость решения уравнений с одной переменной. В общем случае нелинейное уравнение можно записать в виде: F(x)=0, где функция F(x) определена и непрерывна на промежутке {a, b}. Корнем уравнения F(x)=0, является такое число c из области определения функции y=F(x), для которого справедливо равенство F(c)=0.
Поскольку подавляющее большинство нелинейных уравнений не решается путем аналитических преобразований (точными методами), на практике их решают численными методами. Решить такое уравнение численными методами значит установить, имеет ли оно корни, сколько корней, и найти все его корни с заданной точностью.
Задача численного решения уравнений состоит из двух этапов:
1. Отделение корней, т. е. нахождение достаточно малых окрестностей рассматриваемой области, в которых содержится единственный корень.
2. Уточнение корней, т. е. вычисление корней с заданной степенью точности в некоторой окрестности.
1.2. Отделение корней
Во многих случаях отделение корней можно произвести графически. Для этого необходимо построить график функции y=F(x) и найти достаточно малые отрезки, содержащие по одной точке пересечения графика с осью ОХ. Иногда построение значительно упрощается, если функцию y=F(x) представить в виде f1(x)=f2(x) и найти отрезки оси ОХ, содержащие координаты х точек пересечения.
Отделение корней можно также произвести с помощью соответствующей компьютерной программы.
Таким образом, вычисляя значения F(x), начиная с точки x=a, двигаясь вправо с некоторым шагом h, и проверяя условие F(х)*F(x+h)<0 можно отделить все корни [A, B].
1.3. Уточнение корней методом половинного деления
Пусть на отрезке [a, b] имеется единственный корень.
Разделим [a, b] пополам точкой с. Если F(c)=0, то x=c - корень уравнения F(x)=0 на [a, b]. Наиболее вероятно, что F(c)≠0. Тогда возможны 2 случая:
1. F(a)*F(с)<0 2. F(a)*F(с)>0
Выбирая в каждом случае тот из отрезков, на котором функция меняет знак, и продолжая процесс половинного деления дальше, можно дойти до сколь угодно малого отрезка, содержащего корень уравнения.
Данный метод позволяет находить корни уравнения с заданной точностью е. Действительно, если на каком-то этапе процесса деления получен отрезок [a', b'], содержащий корень, то приняв x≈(a'+b')/2, мы найдем корень с точностью е
1.4. Уточнение корней методом итерации
Заменим уравнение F(x)=0 равносильным уравнением x=f(x). Пусть x* - искомый корень уравнения, а x0 – полученное каким-либо способом грубо приближенное значение корня. Подставим x0 в правую часть уравнения x=f(x), получим x1=f(x0). Продолжая процесс подстановки, получим последовательность чисел: x2=f(x1), x3=f(x2),…, xn=f(xn-1). Такая последовательность называется последовательностью приближений или итерационной последовательностью.
Достаточное условие сходимости итерационного процесса
Пусть на отрезке [a, b] уравнение x=f(x) имеет единственный корень и выполняются условия:
1. Функция y=F(x) определена и дифференцируема на [a, b];
2. [a, b] для всех х из [a, b];
3. Существует такое действительное число q, что , для всех х из [a, b];
Тогда итерационная последовательность xn=f(xn-1) сходится при любом начальном значении x0 [a, b].
Это условие не является необходимым, т.е. итерационная последовательность может сходиться и в том случае, если условия теоремы не выполняются.
Оценка погрешности метода итерации
Пусть
1.5. Уточнение корней методом хорд
Пусть уравнение F(x)=0 имеет единственный корень на отрезке [a, b]. Если отрезок [a, b] достаточно мал, то можно считать, что функция y=F(x) монотонна на этом отрезке и не меняет направление выпуклости. Значит на отрезке [a, b] нет точек максимума и минимума, т.е.
I. тип. Условие: |
II. тип. Условие:
|