Смекни!
smekni.com

Изучение функций в курсе математики (стр. 1 из 4)

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Государственное образовательное учреждение

высшего профессионального образования

«Комсомольский-на-Амуре государственный

технический университет»

Факультет компьютерных технологий

Кафедра «Информационных систем»

РАСЧЕТНО-ГРАФИЧЕСКОЕ ЗАДАНИЕ

по дисциплине «Дискретная математика»

Студент группы 9-ПИ Шикер С.А.

2010


Задача 1. Представьте заштрихованные области диаграммы Эйлера-Венна (рис.1) максимально компактным аналитическим выражением, в котором используется минимальное количество операций и букв.

рис.1

Решение

На рис.2 изображена диаграмма Эйлера-Венна, заштрихованные области которой соответствуют выражению: C∩D. На рис.3 изображена диаграмма Эйлера-Венна, заштрихованные области которой соответствуют выражению: C/B. На рис.4 изображена диаграмма Эйлера-Венна, заштрихованные области которой соответствуют выражению: C∩А.

Рис. 2 Рис. 3 Рис.4

Чтобы получить необходимое множество (рис. 1) необходимо между этими тремя выражениями поставить операцию объединение. В результате получаем:

(C∩D) È (C/B) È (C∩A)

Задание 2. Записать высказывание в виде формулы логики высказываний, используя пропозициональные (логические) переменные для обозначения элементарных высказываний, т.е. таких, которые уже не могут быть построены из каких – либо других высказываний:

Неверно, что если Сидоров - не кассир, то Сидоров убил кассира; следовательно, фамилия кассира – Сидоров.

Решение

Введем обозначения:

a – «Сидоров – кассир»

b – «Сидоров убил кассира»

Исходное высказывание содержит связку «если …, то …», которая соответствует импликации, а так же связку «Неверно, что…» и предлог «не», что соответствует отрицанию. Формула имеет вид:

→ a

Задание 3. Используя равносильности логики высказываний, упростить исходную формулу

Для исходной формулы и упрощенной построить таблицу истинности.

Решение.

Введем обозначения: F1 =

F2 =

Построим таблицу истинности для F1 и F2:

a b c
F1
F2
0 0 0 0 0 1 1 0 0 0 0
1 0 0 1 0 1 1 0 0 1 0
2 0 1 0 0 1 1 0 0 1 0
3 0 1 1 0 1 1 0 0 1 0
4 1 0 0 0 1 1 0 0 0 0
5 1 0 1 0 1 1 1 1 1 1
6 1 1 0 1 0 0 0 1 1 1
7 1 1 1 1 1 1 1 1 1 1

Столбцы, соответствующие F1 и F2, совпадают. Это значит, что аналитические преобразования исходной формулы верны.

Задание 4. Ниже приведена клауза

Необходимо выяснить при помощи алгоритма Вонга и метода резолюции является ли клауза теоремой.

Решение

Метод Вонга.

Построим дерево доказательства.







Все ветви дерева заканчиваются клаузами, в которых по обеим сторонам символа

присутствует одна и та же буква. Следовательно, логическая теорема верна.

Метод резолюция.

Необходимо преобразовать клаузу таким образом, чтобы после знака

получился ноль, при этом избавимся от импликации.

Ǿ

Выпишем по порядку все посылки и далее начнем их «склеивать».

1
7 (2;3)А
2
8 (1;5)
3
9 (7;4)
4
10 (9;6)B
5
11 (10;8)Ǿ
6

Иначе, порядок «склеивания» можно представить в виде цепочки равносильных преобразований: