Вычисляем значение целевой функции во всех вершинах симплекса и выбираем из них наименьшее. Это и будет оптимальное решение.
FA = 1
FB = -8
FC = -14
FD = 0
FE = 3
C(2, 4)
F = -14
x2, x4, x5, x6 – базисные переменные, x1, x3 – свободные переменные
x1↑F↑ x3↑F↓ Выбираем x3 ↔ x4
x2, x3, x5, x6 – базисные переменные, x1, x4 – свободные переменные
x1↑F↓ x4↑F↑ Выбираем x1 ↔ x5
x1, x2, x3, x6 - базисные переменные, x4, x5 – свободные переменные
x1↑F↑ x4↑F↑
X=(2, 4, 7, 0, 0, 5)
F = -14
Приведем к каноническому виду:
x2, x4, x5, x6 – базисные переменные, x1, x3 – свободные переменные
↑ | |||||
b | x1 | x3 | |||
x2 | 1 | 2 | -1 | ||
1 | -3 | 1 | |||
← | x4 | 1 | -3 | 1 | 1 |
1 | -3 | 1 | |||
x5 | 12 | -1 | 2 | 6 | |
-2 | 6 | -2 | |||
x6 | 4 | 3 | -1 | ||
1 | -3 | 1 | |||
F | -4 | -9 | 4 | ||
-4 | 12 | -4 |
↑ | |||||
b | x1 | x4 | |||
x2 | 2 | -1 | 1 | ||
2 | 1/5 | -2/5 | |||
x3 | 1 | -3 | 1 | ||
6 | 3/5 | -6/5 | |||
← | x5 | 10 | 5 | -2 | 2 |
2 | 1/5 | -2/5 | |||
x6 | 5 | 0 | 1 | ||
0 | 0 | 0 | |||
F | -8 | 3 | -4 | ||
-6 | -3/5 | 6/5 |
b | x5 | x4 | |||
x2 | 4 | 1/5 | 3/5 | ||
x3 | 7 | 3/5 | -1/5 | ||
x1 | 2 | 1/5 | -2/5 | ||
x6 | 5 | 0 | 1 | ||
F | -14 | -3/5 | -14/5 |
X = (2, 4, 7, 0, 0, 5)
F = -14
2.1.6 Метод допустимого базиса
↑ | |||||||||||||
b | x1 | x2 | x3 | x4 | x5 | x6 | |||||||
F | 0 | -1 | 4 | 0 | 0 | 0 | 0 | ||||||
1/2 | 1/2 | 1/2 | -1/2 | 0 | 0 | 0 | |||||||
← | ξ1 | 1 | 2 | 1 | -1 | 0 | 0 | 0 | 1/2 | ||||
1/2 | 1/2 | 1/2 | -1/2 | 0 | 0 | 0 | |||||||
ξ2 | 2 | -1 | 1 | 0 | 1 | 0 | 0 | 14/3 | |||||
1/2 | 1/2 | 1/2 | -1/2 | 0 | 0 | 0 | |||||||
ξ3 | 14 | 3 | 2 | 0 | 0 | 1 | 0 | 3 | |||||
-3/2 | -3/2 | -3/2 | 3/2 | 0 | 0 | 0 | |||||||
ξ4 | 3 | 1 | -1 | 0 | 0 | 0 | 1 | ||||||
-1/2 | -1/2 | -1/2 | 1/2 | 0 | 0 | 0 | |||||||
f | 20 | 5 | 3 | -1 | 1 | 1 | 1 | ||||||
-5/2 | -5/2 | -5/2 | 5/2 | 0 | 0 | 0 |
↑ | |||||||||||||
b | ξ1 | x2 | x3 | x4 | x5 | x6 | |||||||
F | 1/2 | 1/2 | 9/2 | -1/2 | 0 | 0 | 0 | ||||||
5/2 | -1/2 | -3/2 | 1 | 0 | 0 | 1 | |||||||
x1 | 1/2 | 1/2 | 1/2 | -1/2 | 0 | 0 | 0 | ||||||
5/2 | -1/2 | -3/2 | 1 | 0 | 0 | 1 | |||||||
ξ2 | 5/2 | 1/2 | 3/2 | -1/2 | 1 | 0 | 0 | ||||||
5/2 | -1/2 | -3/2 | 1 | 0 | 0 | 1 | |||||||
ξ3 | 25/2 | -3/2 | 1/2 | 3/2 | 0 | 1 | 0 | 25/3 | |||||
-15/2 | 3/2 | 9/2 | -3 | 0 | 0 | -3 | |||||||
← | ξ4 | 5/2 | -1/2 | -3/2 | 1/2 | 0 | 0 | 1 | 5 | ||||
5 | -1 | -3 | 2 | 0 | 0 | 2 | |||||||
f | 35/2 | -5/2 | 1/2 | 3/2 | 1 | 1 | 1 | ||||||
-15/2 | 3/2 | 9/2 | -3 | 0 | 0 | -3 |
↑ | |||||||||||||
b | ξ1 | x2 | ξ4 | x4 | x5 | x6 | |||||||
F | 3 | 0 | 3 | 1 | 0 | 0 | 1 | ||||||
-3 | 0 | -3/5 | 9/5 | 0 | -3/5 | 9/5 | |||||||
x1 | 3 | 0 | -1 | 1 | 0 | 0 | 1 | ||||||
1 | 0 | 1/5 | -3/5 | 0 | 1/5 | -3/5 | |||||||
ξ2 | 5 | 0 | 0 | 1 | 1 | 0 | 1 | ||||||
0 | 0 | 0 | 0 | 0 | 0 | 0 | |||||||
← | ξ3 | 5 | 0 | 5 | -3 | 0 | 1 | -3 | 1 | ||||
1 | 0 | 1/5 | -3/5 | 0 | 1/5 | -3/5 | |||||||
x3 | 5 | -1 | -3 | 2 | 0 | 0 | 2 | ||||||
3 | 0 | 3/5 | -9/5 | 0 | 3/5 | -9/5 | |||||||
f | 10 | -1 | 5 | -3 | 1 | 1 | -2 | ||||||
-5 | 0 | -1 | 3 | 0 | -1 | 3 |
↑ | |||||||||||||
b | ξ1 | ξ3 | ξ4 | x4 | x5 | x6 | |||||||
F | 0 | 0 | -3/5 | 14/5 | 0 | -3/5 | 14/5 | ||||||
-14 | 0 | 0 | -14/5 | -14/5 | 0 | -14/5 | |||||||
x1 | 4 | 0 | 1/2 | 2/5 | 0 | 1/5 | 2/5 | 10 | |||||
-2 | 0 | 0 | -2/5 | -2/5 | 0 | -2/5 | |||||||
← | ξ2 | 5 | 0 | 0 | 1 | 1 | 0 | 1 | 5 | ||||
5 | 0 | 0 | 1 | 1 | 0 | 1 | |||||||
x2 | 1 | 0 | 1/5 | -3/5 | 0 | 1/5 | -3/5 | ||||||
3 | 0 | 0 | 3/5 | 3/5 | 0 | 3/5 | |||||||
x3 | 8 | -1 | 3/5 | 1/5 | 0 | 3/5 | 1/5 | 40 | |||||
-1 | 0 | 0 | -1/5 | -1/5 | 0 | -1/5 | |||||||
f | 5 | -1 | -1 | 0 | 1 | 0 | 1 | ||||||
-5 | 0 | 0 | -1 | -1 | 0 | -1 |
b | ξ1 | ξ3 | ξ4 | x4 | x5 | ξ2 | |||||||
F | -14 | 0 | -3/5 | 0 | -14/5 | -3/5 | -14/5 | ||||||
x1 | 2 | 0 | 1/5 | 0 | -2/5 | 1/5 | -2/5 | ||||||
x6 | 5 | 0 | 0 | 1 | 1 | 0 | 1 | ||||||
x2 | 4 | 0 | 1/5 | 0 | 3/5 | 1/5 | -3/5 | ||||||
x3 | 7 | -1 | 3/5 | 0 | -1/5 | 3/5 | -1/5 | ||||||
f | 0 | -1 | -1 | -1 | 0 | 0 | -1 |
b | x4 | x5 | |
F | -14 | -14/5 | -3/5 |
x6 | 5 | 1 | 0 |
x2 | 4 | 3/5 | 1/5 |
x3 | 7 | -1/5 | 3/5 |
x1 | 2 | -2/5 | 1/5 |
Допустимое базисное оптимальное решение:
X = (2, 4, 7, 0, 0, 5)
F = -14
2.1.7 Решение двойственной задачи
Прямая задача:
Двойственная задача:
Приводим к каноническому виду:
y1, y3 – базисные переменные, y2, y4, y5, y6 – свободные переменные