Смекни!
smekni.com

Математическое програмирование (стр. 1 из 3)

Математическое программирование

Задача 1

Для производства двух видов изделий А и В используется три типа технологического оборудования. Для производства единицы изделия А оборудование первого типа используется 2 часа, оборудование второго типа – 1 час, оборудование третьего типа – 3 часа. Для производства единицы изделия В оборудование первого типа используется 2 часа, оборудование второго типа – 2 часа, оборудование третьего типа – 1 час.

На изготовление всех изделий предприятие может использовать оборудование первого типа не более чем 48 часа, оборудование второго типа – 38 часов, оборудование третьего типа – 54 часов.

Прибыль от реализации единицы готового изделия А составляет 2 денежные единицы, а изделия В – 3 денежные единицы.

Составить план производства изделий А и В, обеспечивающий максимальную прибыль от их реализации. Решить задачу симплекс-методом путем преобразования симплекс-таблиц. Дать геометрическое истолкование задачи, используя для этого ее формулировку с ограничениями – неравенствами.

Решение.

Данная задача является задачей линейного программирования. Под планом производства понимается: сколько изделий А и сколько изделий В надо выпустить, чтобы прибыль была максимальна.

Прибыль рассчитывается по формуле:

Запишем математическую модель задачи:

Решим данную задачу графически.

Для этого построим на плоскости

области, описываемые ограничениями-неравенствами, и прямую
, которая называется целевой функцией.

Три записанных выше неравенства ограничивают на плоскости многоугольник, ограниченный слева и снизу координатными осями (т.к. искомое количество изделий положительно).

График целевой функции передвигается в направлении, обозначенном стрелкой (в направлении своего градиента), до тех пор, пока не достигнет граничной точки многоугольника – в нашем случае это точка – (10 ; 14). В этой точке целевая функция будет достигать максимума.

Решим эту задачу симплекс-методом. Для этого перейдем от ограничений-неравенств к ограничениям-равенствам, введя дополнительные переменные

.

Составляем симплекс-таблицу:

Базис Cб В 2 3 0 0 0
А1 А2 А3 А4 А5
А3 0 48 2 2 1 0 0
А4 0 38 1 2 0 1 0
А5 0 54 3 1 0 0 1
Fi - Ci 0 -2 -3 0 0 0

В графе Базис записываются вектора переменных, принимаемые за базисные. На первом этапе это – А3, А4, А5. Базисными будут переменные, каждая из которых входит только в одно уравнение системы, и нет такого уравнения, в которое не входила бы хотя бы одна из базисных переменных.

В следующий столбец

записываются коэффициенты целевой функции, соответствующие каждой переменной. Столбец В – столбец свободных членов. Далее идут столбцы коэффициентов Аi при i –й переменной.

Под столбцом свободных членов записывается начальная оценка

Остальные оценки записываются под столбцами соответствующих векторов

.

Преобразуем симплекс-таблицу следующим образом:

Шаг 1: Проверяется критерий оптимальности, суть которого состоит в том, что все оценки должны быть неотрицательны. В нашем случае этот критерий не выполнен, поэтому переходим ко второму шагу.

Шаг 2: Для отрицательных оценок вычисляются величины:

Из этих элементов выбирается тот, для которого вычисленное произведение минимально, в нашем случае -57 минимально, поэтому в качестве разрешающего элемента выбирается второй элемент второго столбца – 2 (выделен в таблице).

Шаг 3: Вторая строка таблицы делится на 2

От элементов строки 1 отнимает соответствующие элементы строки 2, умноженные на 2.

От элементов строки 3 отнимает соответствующие элементы строки 2.

От элементов строки 4 отнимает соответствующие элементы строки 2, умноженные на -3.

Базис Cб В 2 3 0 0 0
А1 А2 А3 А4 А5
А3 0 10 1 0 1 - 0
А5 0 19 0,5 1 0 0,5 0
А2 3 35 2,5 0 0 -0,5 1
Fi - Ci 57 -0,5 0 0 1,5 0

Таким образом, новыми базисными переменными становятся А3, А5, А2.

Возвращаемся к шагу 1 и повторяем весь процесс.

Проверяется критерий оптимальности. Отрицательная оценка только одна – в столбце А1.

Вычисляем:

Разрешающим элементом будет первый элемент первого столбца – 1.

Новыми базисными переменными становятся A5, A2, A1

От элементов строки 2 отнимает соответствующие элементы строки 1, умноженные на 0,5.

От элементов строки 3 отнимает соответствующие элементы строки 1, умноженные на 2,5.

От элементов строки 4 отнимает соответствующие элементы строки 1, умноженные на -0,5.

Базис Cб В 2 3 0 0 0
А1 А2 А3 А4 А5
А5 0 10 1 0 1 -1 0
А2 3 14 0 1 -0,5 1 0
А1 2 10 0 0 -2,5 2 1
Fi - Ci 62 0 0 1,5 1 0,5

Отрицательных оценок нет, то есть критерий оптимальности выполнен.

Таким образом, получается искомое значение целевой функции

F(10; 14; 0; 0; 10) = 62, т.е. возвращаясь к системе неравенств, получаем:

Ответы, полученные различными методами, совпадают.

Ответ: хопт = ( 10 , 14) Значение функции : F = 62

Задача 2

Имеются три пункта отправления А123 однородного груза и пять пунктов В1, В2, В3, В4, В5 его назначения. На пунктах А123 находится груз в количествах 50, 30, 70 тонн. В пункты В1, В2, В3, В4, В5 требуется доставить соответственно 20, 30, 50, 30, 20 тонн груза. Расстояния в сотнях километрах между пунктами отправления и назначения приведены в матрице D:

Пункты

отправления

Пункты назначения
В1 В2 В3 В4 В5
А1 9 5 1 1 9
А2 7 1 4 9 4
А3 5 3 4 9 9

Найти такой план перевозок, при котором общие затраты на перевозку грузов будут минимальными.

Указания: 1) считать стоимость перевозок пропорциональной количеству груза и расстоянию, на которое этот груз перевозится, т.е. для решения задачи достаточно минимизировать общий объем плана, выраженный в тонно-километрах;

2) для решения задачи использовать методы северо-западного угла и потенциалов.

Решение.

Составим математическую модель задачи:

Обозначим

- количество груза, перевезенного из пункта отправления i в пункт назначения j.

Получим следующие ограничения (т.к. весь груз должен быть вывезен, и все потребности удовлетворены полностью):

При этом должна быть минимизирована целевая функция