где
, а - симметрическая матрица порядка над ; эти и определяются преобразованием однозначно. Кроме того, любые такие и соответствуют некоторому из . Наше утверждение получается теперь, если умножить порядок группы на число симметрических матриц порядка над полем , т. е. .2) Зафиксируем максимальное вполне вырожденное подпространство
пространства . По теореме Витта все максимальные вполне вырожденные подпространства пространства даются формулой , где пробегает группу . Из замечания 1) легко следует, что в этом процессе каждое максимальное вполне вырожденное подпространство повторяется точнораз, поэтому общее число таких подпространств равно порядку группы
, деленному на указанную величину. Очевидно, это и есть требуемое число.Предложение Если , то число регулярных плоскостей в пространстве равно
Доказательство. Поступая, как при доказательстве утверждения , убедимся, что
должно содержатьрегулярных плоскостей. Это число совпадает с указанным выше (применить теорему ).
Предложение Группа изоморфна симметрической группе .
Доказательство. Будем называть конфигурацией произвольное подмножество
из элементов в -мерном регулярном знакопеременном пространстве над полем , обладающее тем свойством, что любые два его различных элемента не ортогональны. Каждый ненулевой вектор из принадлежит ровно двум конфигурациям и , так что они пересекаются по . Чтобы убедиться в этом, возьмем симплектическую базу пространства , в которой . Ясно, чтои
- две различные конфигурации, пересекающиеся по множеству
. Легкая проверка перебором показывает, что других конфигураций, содержащих элемент , нет. Если теперь выписать все различные конфигурации в пространстве , то каждый вектор из появится точно в двух из них, откуда и . Пусть - Множество всех конфигураций в .Если
- произвольный элемент из , то тогда и только тогда является конфигурацией, когда - конфигурация, поэтому индуцирует отображение . Ясно, что это отображение на и, значит, перестановка на . Очевидно, что есть гомоморфное отображение . Чтобы найти его ядро, возьмем в элемент . Пусть таков, что . Пусть и - две конфигурации, содержащие . Тогда не принадлежит одной из них, скажем, . Отсюда и . Другими словами, ядро тривиально, и мы имеем инъективный гомоморфизм . По теореме группа состоит из элементов, поэтому .Заметим, что группа
неабелева. Чтобы убедиться в этом, достаточно взять нетривиальные проективные трансвекции из с неортогональными вычетными прямыми. Следовательно, группа также неабелева.Предложение Группа имеет тривиальный центр, а .
Доказательство. Рассмотрим произвольный элемент
из центра группы . Пусть - произвольная прямая из . Пусть - проективная трансвекция из с вычетной прямой . Тогда вычетной прямой преобразования является . Но , так как лежит в центре. Следовательно, для всех . Поэтому и, значит, группа действительно не имеет центра. Второе утверждение следует из первого, если применить гомоморфизм .