Предложение Если , - произвольные прямые из , то множество трансвекций из с вычетной прямой и множество трансвекций с вычетной прямой сопряжены относительно .
Доказательство. По теореме Витта в группе
существует такой элемент , что . Тогда сопряжение элементом отображает множество трансвекций из с вычетной прямой на множество трансвекций из с вычетной прямой .Пример Две трансвекций из не обязательно сопряжены в . Например, трансвекций с вычетной прямой , сопряженные с , имеют вид , где пробегает .
Замечание Пусть - симплектическая база пространства . Если - произвольная симметрическая матрица порядка 2 над и - линейное преобразование, определенное матрицей
то мы знаем, что
принадлежит группе . Если преобразовать в , производя 1) прибавление кратного одного столбца к другому с последующим аналогичным преобразованием соответствующих строк или 2) перестановку двух столбцов с последующей перестановкой соответствующих строк, то линейное преобразование с матрицейснова будет принадлежать группе
, так как тоже будет симметрической. В действительности и сопряжены в . Чтобы убедиться в этом, заметим, что при подходящей матрице из . Преобразование , определенное матрицейпринадлежит группе
, и , так какПредложение Предположим, что , , и пусть - нормальная подгруппа группы , содержащая регулярный элемент с вычетом , представимый в виде произведения двух трансвекций из . Тогда .
Доказательство. Имеем разложение
, где - регулярная плоскость. Рассмотрим группуТогда
. Кроме того, . Это очевидно, если ; если же , то применяем 2.1.12 и теорему 2.1.11 . Поэтому - нормальная подгруппа в , не содержащаяся в . Отсюда следует, что . В частности, если - фиксированная прямая в , то содержит все трансвекции плоскости с вычетной прямой . Следовательно, содержит все трансвекции из с вычетной прямой , а потому в силу вообще все трансвекции из и .Предложение Предположим, что , или , , и пусть - нормальная подгруппа группы , содержащая вырожденный элемент с вычетом 2, представимый в виде произведения двух трансвекций из . Тогда .