Хорошо известно, что при
, и всегда есть примитивный простой делитель числа . Пусть , где - простое число, - целое положительное число. Обозначим наибольший примитивный простой делитель числа (так, что делит и не делит для ). Определим как произведение всех примитивных простых делителей . Мы будем рассматривать максимальные факторизации группы . Отметим, чтоТеорема Пусть , где - нечетное число. Если , где и - максимальные подгруппы группы , тогда , где - максимальная параболическая подгруппа группы , изоморфная и имеющая порядок
Доказательство. Предположим, что
делит . Из следует, что является одной из следующих групп , , или . Пусть сначала . В этом случае . Из следует, что это в точности максимальная параболическая подгруппа группы и . Из сравнения порядков группы и произведения получаем следующую максимальную факторизацию:Пусть теперь
является одной из следующих групп , или . Из сказанного выше следует, что не изоморфна . Из пункта 2.4 получим, что есть или . По теореме 2.4D есть 3 или 7. Если , тогда 5 делит . В этом случае из следует, что одна из групп , , . Поскольку , то делит . Однако не делится на . Противоречие с тем, что . Следовательно, и . Так как 27 делит , то является параболической подгруппой группы и имеет место факторизация:Теорема доказана.
Пусть
, где - положительное число. Тогда ортогональная группа и . обозначает сплетение группы с группой , т.е. , где . Очевидно, что ; - максимальная параболическая подгруппа в порядка ; - группа Судзуки порядка , где .Доказательство. Из следует, что
является максимальной подгруппой в . Пусть и . Обозначим