Если
- знакопеременная форма и - произвольный элемент из , то отображение , определенное формулой , также знакопеременно, и сложный объект, являющийся исходным векторным пространством с этой новой формой , будет знакопеременным пространством, которое мы обозначим через .Представление знакопеременного пространства
в знакопеременное пространство (оба над полем и с формами, обозначаемыми через ) есть по определению линейное преобразование пространства в , такое, что для всех , . Инъективное представление называется изометрией в . Пространства и называются изометричными, если существует изометрия на . Пусть обозначает представление, - изометрию ``в'', а или - изометрию ``на''. Очевидно, что композиция двух изометрии - изометрия и преобразование, обратное к изометрии, - также изометрия. В частности, множество изометрий пространства на себя является подгруппой общей линейной группы абстрактного векторного пространства ; она называется симплектической группой знакопеременного пространства и обозначается через . Для любого ненулевого элемента из имеем .Предложение Пусть - линейное преобразование знакопеременного пространства в знакопеременное пространство . Предположим, что существует база пространства , такая, что для всех , . Тогда -- представление.
Доказательство. Это тривиально следует из определений.
Каждому знакопеременному пространству
со знакопеременной формой сопоставим отображения и пространства в сопряженное пространство ( рассматривается как абстрактное векторное пространство над ). По определению отображение сопоставляет произвольному элементу из линейный функционал , определенный формулой , а переводит в . Легко проверяется, что и являются линейными преобразованиями. - матрица над называется кососимметрической, если , и знакопеременной, если и на главной диагонали стоят нули. Таким образом, знакопеременные матрицы являются кососимметрическими. Обратно, кососимметрические матрицы являются знакопеременными, если характеристика поля не равна . Рассмотрим знакопеременное пространство . Мы можем ассоциировать с базой пространства матрицу, у которой на месте стоит . Назовем матрицей знакопеременного пространства в базе и будем писатьЕсли существует хотя бы одна база, в которой
имеет матрицу , то будем писать . Матрица , ассоциированная со знакопеременным пространством указанным способом, является, очевидно, знакопеременной. Что происходит при изменении базы? Предположим, что в базе и - матрица перехода от первой базы ко второй, т. е.