Смекни!
smekni.com

Применение новейших экономико-математических методов для решения задач (стр. 2 из 4)

1.2 Системы двух нелинейных алгебраических уравнений.

Задание #2

Вышеизложенный способ получения решения уравнения может быть легко распространен для случая решения системы двух уравнений с двумя неизвестными, если система имеет следующий вид:

Y=Ф(x)

Y=Ψ(x) (3)

Преобразуем систему (3) в одно уравнение вида (4):

Ф(x)- Ψ(x)=0 (4)

Полученное уравнение уже можно решить с помощью Подбор параметра… так как это было описано выше.

Рассмотрим нахождение равновесной цены и объема продаж для рынка некоторого товара.

Пусть функция спроса на товар имеет вид Qd=80e-0.05p-20, 0≤p≤30, а функция предложения Qs=12p-3e0.02p, 0≤p≤30.

Найти равновесные цену и объем, построить графики спроса и предложения. Имеющуюся систему уравнений

Qd=80e-0.05p-20

Qs=12p-3e0.02p

преобразуем в одно уравнение вида 80e-0.05p-20 - 12p+3e0.02p=0.

Подбор параметра… описанным выше, находим равновесную цену, она равна 4,049213, подставив это значение в одно из уравнений системы. Получим и значение равновесного объема - 45,33749 . Для построения графика, иллюстрирующего ситуацию равновесия спроса и предложения на рынке, воспользуемся знанием равновесной цены и возьмем значения в некоторой окрестности от нее. Получим следующую иллюстрацию решения задачи о равновесии на рынке (рис.6.).


рис.6.

Глава №2 Матричная алгебра

Матричная алгебра тесно связана с линейными функциями и с линейными ограничениями, в связи, с чем находит себе применение в различных экономических задачах:

· в эконометрике, для оценки параметров множественных линейных регрессий;

· при решении задач линейного программирования;

· при макроэкономическом программировании и т.д.

Особое отношение к матричной алгебре в экономике появилось после создания моделей типа «Затраты-Выпуск», где с помощью матриц технологических коэффициентов объясняется уровень производства в каждой отрасли через связь с соответствующими уровнями во всех прочих отраслях.

Электронная таблица EXCEL имеет ряд встроенных функций для работы с матрицами:

ТРАНСП – транспонирование исходной матрицы;

МОПРЕД – вычисление определителя квадратной матрицы;

МОБР – вычисление матрицы обратной к данной;

МУМНОЖ – нахождение матрицы, являющейся произведением двух матриц.

Кроме того, возможно выполнение операций поэлементного сложения (вычитания) двух матриц и умножения (деления) матрицы на число.

На примере проиллюстрируем некоторые из этих функций. Найдем сумму двух матриц А(5*4) и В(5*4) и транспонируем матрицу-результат.

2.1 Сложение матриц

Задание #3

Для сложения двух матриц одинаковой размерности следует выполнить следующую последовательность действий:

1. Задать две исходных матрицы.

2. Отметить место для матрицы-результата.

3.


В выделенном месте под результат поставить знак равенства и записать сумму так, как показано на рис.7.

рис.7.

4. Завершить выполнение работы нажатием клавиш Shift/Ctrl/Enter (рис.8.)


рис.8.

2.2 Транспонирование матрицы

Работу с матричной функцией ТРАНСП следует выполнять в следующем порядке:

1. Задать исходную матрицу.

2. Отметить место для матрицы-результата.

3. Обратиться к мастеру функций, найти функцию ТРАНСП и выполнить постановку задачи (рис.9.).


рис.9.

4. Завершить выполнение работы нажатием клавиш Shift/Ctrl/Enter (рис.10.) .


рис.10.

2.4Вычисление обратной матрицы

Задание #4

Теперь найдем матричное выражение: Y=(FH-1)/29+K. Посчитаем определитель полученной матрицы. Поиск решения разобьем на ряд шагов:

1.Найдем матрицу обратную к матрице Н.

2.Умножим матрицы Fи H-1.

3.Результат поделим на 29.

4.Сложим полученную матрицу с матрицей К.

5.Найдем определитель полученной матрицы.

Работу с матричной функцией МОПРЕД следует выполнять в следующем порядке:

1.Задать исходную матрицу.

2.Отметить место для матрицы-результата.


3.Обратиться к мастеру функций, найти функцию МОПРЕД и выполнить постановку задачи (рис.11.).

рис.11.

5. Завершить выполнение работы нажатием клавиш Shift/Ctrl/Enter (рис.12.) .


рис.12.

2.4 Умножение матриц

Надо умножить матрицы Н-1 и F. Это умножение возможно, так как число столбцов матрицы Н-1 совпадает с числом строк матрицы F.

Выполним следующую последовательность действий:

1. Зададим матрицу F.

2. Отметим место под матрицу-результат.

3. Обратимся к мастеру функций, найдем функцию МУМНОЖ и выполним постановку задачи так, как показано на рис.13. H-1


рис.13.

В качестве массива 1 указываем диапазон адресов матрицы Н-1, а в качестве массива 2 – диапазон адресов матрицы F. Для получения результата нажмем одновременно клавиши Shift/Ctrl/Enter(рис.14.).


рис.14.

2.5 Умножение матрицы на число

Для умножения матрицы на число следует выполнить следующие действия:

1. Задать исходную матрицу.

2. Отметить место для матрицы-результата.

3.


В выделенном под результат месте электронной таблицы записать произведение так, как показано на рис.15.

рис.15.

4.


Завершить выполнение работы нажатием клавиш Shift/Ctrl/Enter(рис.16.).

рис.16.

2.6 Сложение матриц

Для сложения двух матриц одинаковой размерности следует выполнить следующую последовательность действий:

1.Задать две исходные матрицы.

2.Отметить место для матрицы-результата.


3.В выделенном под результат месте электронной таблицы записать сумму так, как показано на рис.17.

рис.17.


4.Завершить выполнение работы нажатием клавиш Shift/Ctrl/Enter(рис.18.).

рис.18.

2.7 Вычисление определителя матрицы

Для вычисления определителя матрицы сформируем лист электронной таблицы:

1.Определим исходную матрицу.

2.Определим место под результат.

3.Обратимся к мастеру функций, найдем функцию МОПРЕД , выполним постановку задачи (рис.19.).


рис.19.


4.Щелкнув по кнопке ОК, получим значение определителя (рис.20.).

рис.20.

2.8 Системы линейных алгебраических уравнений

Задание #5

Решение систем линейных алгебраических уравнений всегда занимало математиков и для их решения было разработано немало численных методов, подразделяющихся на прямые и итерационные.

В EXCEL задача получения решения СЛАУ решается с помощью вышеописанных матричных функций, для чего исходную систему надо представить в виде матричного уравнения.

Рассмотрим последовательность действий для получения решения СЛАУ на конкретном примере.

-12X1+12X2+23X3+6X4=120

-3X1+0.3X2-3X3+X4=-25

-67X1-3X2-51X3-73X4=536 (5)

-91X1-6X2+4X3-13X4=-316

Для того, чтобы система (5) имела единственное решение необходимо и достаточно, чтобы определитель системы, составленный из коэффициентов при переменных Х1, Х2, Х3, Х4, не был равен нулю.