1.2 Системы двух нелинейных алгебраических уравнений.
Задание #2
Вышеизложенный способ получения решения уравнения может быть легко распространен для случая решения системы двух уравнений с двумя неизвестными, если система имеет следующий вид:
Y=Ф(x)Y=Ψ(x) (3)
Преобразуем систему (3) в одно уравнение вида (4):
Ф(x)- Ψ(x)=0 (4)
Полученное уравнение уже можно решить с помощью Подбор параметра… так как это было описано выше.
Рассмотрим нахождение равновесной цены и объема продаж для рынка некоторого товара.
Пусть функция спроса на товар имеет вид Qd=80e-0.05p-20, 0≤p≤30, а функция предложения Qs=12p-3e0.02p, 0≤p≤30.
Найти равновесные цену и объем, построить графики спроса и предложения. Имеющуюся систему уравнений
Qd=80e-0.05p-20Qs=12p-3e0.02p
преобразуем в одно уравнение вида 80e-0.05p-20 - 12p+3e0.02p=0.
Подбор параметра… описанным выше, находим равновесную цену, она равна 4,049213, подставив это значение в одно из уравнений системы. Получим и значение равновесного объема - 45,33749 . Для построения графика, иллюстрирующего ситуацию равновесия спроса и предложения на рынке, воспользуемся знанием равновесной цены и возьмем значения в некоторой окрестности от нее. Получим следующую иллюстрацию решения задачи о равновесии на рынке (рис.6.).
рис.6.
Матричная алгебра тесно связана с линейными функциями и с линейными ограничениями, в связи, с чем находит себе применение в различных экономических задачах:
· в эконометрике, для оценки параметров множественных линейных регрессий;
· при решении задач линейного программирования;
· при макроэкономическом программировании и т.д.
Особое отношение к матричной алгебре в экономике появилось после создания моделей типа «Затраты-Выпуск», где с помощью матриц технологических коэффициентов объясняется уровень производства в каждой отрасли через связь с соответствующими уровнями во всех прочих отраслях.
Электронная таблица EXCEL имеет ряд встроенных функций для работы с матрицами:
ТРАНСП – транспонирование исходной матрицы;
МОПРЕД – вычисление определителя квадратной матрицы;
МОБР – вычисление матрицы обратной к данной;
МУМНОЖ – нахождение матрицы, являющейся произведением двух матриц.
Кроме того, возможно выполнение операций поэлементного сложения (вычитания) двух матриц и умножения (деления) матрицы на число.
На примере проиллюстрируем некоторые из этих функций. Найдем сумму двух матриц А(5*4) и В(5*4) и транспонируем матрицу-результат.
Для сложения двух матриц одинаковой размерности следует выполнить следующую последовательность действий:
1. Задать две исходных матрицы.
2. Отметить место для матрицы-результата.
3.
рис.7.
4. Завершить выполнение работы нажатием клавиш Shift/Ctrl/Enter (рис.8.)
рис.8.
Работу с матричной функцией ТРАНСП следует выполнять в следующем порядке:
1. Задать исходную матрицу.
2. Отметить место для матрицы-результата.
3. Обратиться к мастеру функций, найти функцию ТРАНСП и выполнить постановку задачи (рис.9.).
рис.9.
4. Завершить выполнение работы нажатием клавиш Shift/Ctrl/Enter (рис.10.) .
рис.10.
2.4Вычисление обратной матрицы
Теперь найдем матричное выражение: Y=(FH-1)/29+K. Посчитаем определитель полученной матрицы. Поиск решения разобьем на ряд шагов:
1.Найдем матрицу обратную к матрице Н.
2.Умножим матрицы Fи H-1.
3.Результат поделим на 29.
4.Сложим полученную матрицу с матрицей К.
5.Найдем определитель полученной матрицы.
Работу с матричной функцией МОПРЕД следует выполнять в следующем порядке:
1.Задать исходную матрицу.
2.Отметить место для матрицы-результата.
рис.11.
5. Завершить выполнение работы нажатием клавиш Shift/Ctrl/Enter (рис.12.) .
рис.12.
Надо умножить матрицы Н-1 и F. Это умножение возможно, так как число столбцов матрицы Н-1 совпадает с числом строк матрицы F.
Выполним следующую последовательность действий:
1. Зададим матрицу F.
2. Отметим место под матрицу-результат.
3. Обратимся к мастеру функций, найдем функцию МУМНОЖ и выполним постановку задачи так, как показано на рис.13. H-1
рис.13.
В качестве массива 1 указываем диапазон адресов матрицы Н-1, а в качестве массива 2 – диапазон адресов матрицы F. Для получения результата нажмем одновременно клавиши Shift/Ctrl/Enter(рис.14.).
рис.14.
2.5 Умножение матрицы на число
Для умножения матрицы на число следует выполнить следующие действия:
1. Задать исходную матрицу.
2. Отметить место для матрицы-результата.
3.
рис.15.
4.
рис.16.
Для сложения двух матриц одинаковой размерности следует выполнить следующую последовательность действий:
1.Задать две исходные матрицы.
2.Отметить место для матрицы-результата.
рис.17.
рис.18.
2.7 Вычисление определителя матрицы
Для вычисления определителя матрицы сформируем лист электронной таблицы:
1.Определим исходную матрицу.
2.Определим место под результат.
3.Обратимся к мастеру функций, найдем функцию МОПРЕД , выполним постановку задачи (рис.19.).
рис.19.
рис.20.
2.8 Системы линейных алгебраических уравнений
Решение систем линейных алгебраических уравнений всегда занимало математиков и для их решения было разработано немало численных методов, подразделяющихся на прямые и итерационные.
В EXCEL задача получения решения СЛАУ решается с помощью вышеописанных матричных функций, для чего исходную систему надо представить в виде матричного уравнения.
Рассмотрим последовательность действий для получения решения СЛАУ на конкретном примере.
-12X1+12X2+23X3+6X4=120-3X1+0.3X2-3X3+X4=-25
-67X1-3X2-51X3-73X4=536 (5)
-91X1-6X2+4X3-13X4=-316
Для того, чтобы система (5) имела единственное решение необходимо и достаточно, чтобы определитель системы, составленный из коэффициентов при переменных Х1, Х2, Х3, Х4, не был равен нулю.