Эксплуатация 1 самолета первого типа обойдется 5000$ , а второго 9000$. Сколько надо использовать самолетов каждого типа, если для формирования экипажей имеется не более 60 человек.
Для начала, обозначим переменные: пусть X1 – это оптимальное количество самолетов первого типа, X2 – оптимальное количества самолетов второго типа. Очевидно, что стоимость эксплуатации самолетов должна быть минимальной. Следовательно,
5000X1 + 9000X2→min
Теперь определим ограничения. Для формирования экипажей имеется не более 60 человек, следовательно:
3X1+5X2<=60
Пассажиров надо перевезти не менее 700 человек, следовательно:
30X1+65X2>=700
Рис 3.6
Т.е. нам необходимо примерно (X1=8) 8 самолётов первого класса и (X2=6) 6 самолётов второго класса, для перевозки пассажиров.
Решим еще одну задачу с помощью Подбор параметра…. Найдем максимум функции
F=2x1-x2+x3®max
При ограничениях:
-x1-3x2+x3≥ -5
x1+2x2+x3≤ 7
x1+x2+2x3≤ 3
x1 ≥0
x2,≥0
x3≥ 0
Рис 4.4
рис 4.5
После выполнения поставленной задачи получаем следующие значения переменных:
рис 4.6
Как видим, при найденных значениях целевая x1, x2, x3 функция принимает максимальное значение равное 6 и при этом удовлетворяются все ограничения поставленной задачи.
3.5 Системы нелинейных алгебраических уравнений
В начале рассматривался способ решения систем двух нелинейных алгебраических уравнений, имеющих специальный вид, который позволяет привести их к одному уравнению и решать это уравнение с помощью команды Подбор параметра…. Такой способ сильно сужает область систем нелинейных уравнений, подлежащих решению, так как не всегда явно можно выразить одну переменную через другую. Кроме того, с его помощью нельзя решать системы, состоящие из более чем двух уравнений.
Команда Сервис/Подбор параметра… обладает широким спектром функций, одна из которых позволяет сконструировать постановку задачи для решения систем нелинейных алгебраических уравнений. В качестве примера рассмотрим решение системы уравнений:
2А3+АВС+5А2=12412В+2А=8
3С+4АС= -6
Сформируем лист электронной таблицы как показано на рис 5.5.
рис 5.5
Систему уравнений разместим в клетках А6, А7, А8, а вместо переменных А, В, С укажем адреса клеток А3, В3 и С3 соответственно, которые содержат приближенные значения переменных.
рис 5.6
В такой постановке одно из уравнений системы (любое) выступает как целевая функция, а два других как ограничения. После щелчка на кнопке ОК в клетках А3, В3 и С3 получим решение системы уравнений (рис 5.7).
рис 5.7
Таким образом получаем, что решениями системы уравнений являются следующие значения: А=3,28 В=0,12 и С=-0,37.
Здесь, как и в ранее приведенных примерах, большое значение имеет выбор начального приближения, который может обусловить не только нахождение разных решений, но и не обеспечить нахождения ни одного. Это еще раз говорит о необходимости тщательного выбора начального приближения решения. Что можно сделать исходя из косвенных знаний об области расположения интересующего нас решения или владея методами отделения корней.
1. “ Microsoft Office 97“ , Эд Ботт , БИНОМ , Москва , 1998 год.
2. “ Microsoft Excel 2000 в подлиннике“ , БХВ - Санкт-Петербург ,
1999 год.