Таким образом, аффинное преобразование (2) сохраняет ориентацию пары векторов (и, соответственно, плоских фигур) в случае, когда его определитель
положителен. В этом случае преобразование (2) является аффинным преобразованием первого рода. Иначе, аффинное преобразование меняет ориентацию пары векторов (и, соответственно, плоских фигур) в случае, когда его определитель отрицателен. И в таком случае преобразование (2) является аффинным преобразованием второго рода.Найдём координаты неподвижных точек аффинного преобразования (2). Для неподвижных точек, то есть для точек, переходящих в себя при аффинном преобразовании, должно выполняться следующее условие: z’=z, то есть
. (7)Выразим отсюда z. Для этого решим следующую систему
( где )(8)Получили координату точки, являющейся инвариантом аффинного преобразования с коэффициентами a, b, c.
Тогда для аффинного преобразования возможны три случая [1]:
1) неподвижных точек не существует;
2) неподвижная точка единственная;
3) неподвижных точек бесконечно много.
Рассмотрим каждый из этих случаев.
1.Неподвижных точек не существует тогда и только тогда, когда для коэффициентов преобразования выполняется условие:
Преобразовав второе условие системы, получим . (9)Выполнимость этой системы и является условием того, что для данного аффинного преобразования неподвижных точек не существует.
2. Неподвижная точка единственна тогда и только тогда, когда
, то есть (10)3. Неподвижных точек бесконечно много тогда и только тогда, когда выполняется условие
что равносильно системе (11)Возьмём условие неподвижности точки:
(12)и рассмотрим два случая:
1) Пусть с≠0, тогда умножим (12) на с, получим:
. Воспользовавшись системой (11), получим равенство: , (13)где коэффициенты при z и
сопряжены, а свободный член является действительным числом, следовательно, равенство (13) при условии (11) задаёт прямую неподвижных точек.2) Пусть теперь с=0, тогда (12) представится в виде
. Выразим отсюда z: , откуда Приравняем правые части и получим равенство , что равносильно условию . Поделим на z≠0, в результате чего получим . То есть условие (11) задаёт прямую неподвижных точек (12), которая называется осью аффинного преобразования. Если такая прямая есть, то аффинное преобразование называется родством.Если а=1, то
- единственная неподвижная точка, и аффинное преобразование называется центроаффинным.Если b=0 и c≠0, то аффинное преобразование является параллельным переносом.
Если b=0 и c=0, то аффинное преобразование является тождественным.
Найдём условие, при котором прямая при аффинном преобразовании (2) перейдёт сама в себя, то есть будет являться инвариантом аффинного преобразования.
Возьмём уравнение прямой (3), которая при аффинном преобразовании перейдёт в прямую . Для того, чтобы прямая (3) перешла сама в себя, необходимо выполнение следующих условий: где R. (14) Преобразуем первые два равенства системы (14) к виду Приравняем теперь первые два равенства и после преобразования получим: представим первое равенство системы в виде совокупности двух условий теперь эту систему можно представить как совокупность двух систем (15) Рассмотрим каждую систему полученной совокупности отдельно.1) Первая система совокупности приводится к виду
и теперь уже она может быть представлена в виде совокупности двух систем Отметим, что если для прямой (3) выполняется первая система, то нет и самой прямой (3). Решая вторую систему, также получим, что нет самой прямой (оба коэффициента равны нулю). Таким образом получили, что первая система совокупности (15) не имеет решений.2) Рассмотрим вторую систему совокупности (15)
. Выразим из второго равенства системы коэффициент q и воспользуемся тем, что (из второго равенства (14)), тогда рассматриваемая система будет выглядеть следующим образом: