1) ^^•г- 6'зс -^/^^ te-з;^^ / ^•^ ^=^ ^с де^.
2) У---^^S^-У^-2(^--%):LS//^^CL)( У-^/Р п^с ^-Х
Рассмотрим частную задачу, которая играет ключевое значение в теории оптимизации.
Задача 2.
Даны числа Ci^, Ci^, ..., Ctn. . Найти число У такое, чтобы сумма / v2 / ,0 / ,2
^п.^ (х-а^)-(-(у-а^)-^,., ч-(^~с^)
имела наименьшее значение. S^ ^•K2-2•(Q^t-CL^-^<^)'X^(Oцi1-Q.^,„^ll^ )^
. ^. ( х- ^^-^) \А, ^ 'А-^^)^^^-^ rv^rv ^^А ^сс эс= ((^+(^f-,„^a^)/h. .
Здесь мы рассматривали лишь простейшие примеры решения задач, с более сложными задачами можно ознакомиться по литературе.
10
1.4. К решению экстремальных задач с применением производной
Введение изучения производной в школьный курс открыло возможности более глубокого изучения вопросов физики, рассмотрению прикладных задач. И задачи на экстремум функции начали рассматриваться с общей точки зрения. Например, нахождение экстремума трехчлена = а х2-/- ё х + с =T'fxJ рассматривается при помощи производной:
^= 2.dsei-e^0 ^ r&- -S/2а-критическая точка, при этом если у4. (^+^)^-2oi£>o ^ ^ (е-(-^) = 2ае^о, п^>
г^с^ У- У (- ^/2о.)^ иначе г^гъ У=^(~ wq,) .
В пункте 28 [1] хорошо изложены правила нахождения максимальных и минимальных значений функций.
Однако при решении некоторых задач применение элементарных способов более эффективно, чем применение производной. Например, задача № 367 решается очень просто элементарным способом:
Данное положительное число разложить на два слагаемых так, чтобы произведение было наибольшим.
Решение: Пусть U - данное число, а X - одно из слагаемых. Из условия ^а^ L X^-^J только при Y= О-- Х .находим Х= °-/S .Обобщение этой задачи, решаемое в вузовских курсах при помощи экстремума многих переменных следующее.
Задача 3. Положительно^число OL требуется разбить на П. неотрицательных слагаемых так, чтобы и произведение было наибольшим. Если <Х данное число, то ft слагаемые будут Я?у, ,„, Д?п-/ ; Ci-( Хг^-,„ч- ^.i). При этом произведение Лу- S?s. •,.,' Хц^' L О. -(х/ ч- ,„ ^ ЗСл.^ ) 3 достигает максимума при Эрг ^ Хл = ,„ = X^.f ^ CL ~ {'У-f -+,., -<• Хп - /) . Отсюда у,-= Ci-fn-()Vf ц ^= ^/п ,т.е. все слагаемые равны ^/г. . А решение этой задачи при помощи экстремума функций нескольких переменных весьма затруднительно.
15
1.6. Экстремальные задачи в неполной средней школе
В курсе математики V - VI классов учащимся нередко приходится решать задачи, в которых допускается несколько или даже много решений, причем далеко не всегда равнозначных. В таких случаях можно ставить дополнительный вопрос: найти наиболее выгодное решение, т.е. решать экстремальные задачи. С такими задачами приходится сталкиваться при изучении следующих разделов: "Неравенства", "Площадь и периметр прямоугольника", "Натуральные числа", "делимость натуральных чисел".
Поскольку ученики V-VI классов встречаются с двойным неравенством, то в этих классах методом оценки можно решать задачи на нахождение наибольшего и наименьшего значения линейного выражения a. y-h^ где /ч^эе^/г (лги/?.- целые неотрицательные числа, ^г- /• п- ).
• -'' ' ^
Задача: Стоимость телеграммы вычисляется почтовыми работни
ками по следующему правилу: по 5 копеек за каждое слово и еще 20 копеек за отправку. Какая может быть наибольшая и наименьшая цена телеграммы, если количество слов в телеграмме определяется решением неравенства: /^ х- ^ ^0 ?
Решение: решение сводится к нахождению наибольшего и наименьшего значения выражения S'x-^-20 , если //^ а? ^^ , л G /М Сначала можно предложить вычислить значение выражения при нескольких значениях переменной, взятых из промежутка ^ ^ х ^ ^ . Замечаем, что сумма будет наибольшая, если слагаемое -Ух будет наибольшим, т.е. будет равно 5*40и наименьшим, если слагаемое .^ будет наименьшим, т.е. будет равно 5*17.
Среди экстремальных задач геометрические задачи на вычисление площадей и периметров представляют очень большой интерес. Решение этих задач в V-VI классах методом оценки формирует первое представление о максимальном произведении при постоянной сумме двух переменных и о минимальной сумме при постоянном произведении.
Задача. Начертите прямоугольник, периметр которого 36 см, и вычислите его площадь.
Решение: оформим в виде таблицы:
16
периметр (см) | 36 | 36 | 36 | 36 | 36 | 36 | 36 | 36 | 36 |
длина (см) | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 |
ширина (см) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
площадь (см ) | 17 | 32 | 45 | 56 | 65 | 72 | 77 | 80 | 81 |
Вывод: SHaH6.=81cM при й.=6=.9см
Построение прямоугольников и запись решения в виде таблицы помогает лучше видеть, как изменяется площадь прямоугольника с постоянной площадью.
Остановимся на решении экстремальных задач в разделе "Натуральные числа". Здесь на первом этапе решаются самые простые задачи, где число рассматриваемых элементов невелико. Это во многом упрощает организацию работы, требует меньше времени и создает хорошую возможность детям увидеть особенности применения метода перебора к решению задач.
Задача. С помощью цифр 5,2 и 7 напишите все трехзначные числа, в каждом из которых все цифры различны. Среди этих чисел найдите наибольшее и наименьшее число
Решение: Это есть числа 527, 572, 275, 257, 752, 725. Наибольшее из них - 752, наименьшее - 257.
На первый взгляд кажется, что это очень простая задача, но она несет большую теоретическую нагрузку. В жизненных и производственных ситуациях часто приходится встречаться с задачами, которые допускают много различных решений. Решение экстремальных задач в курсе алгебры проходит в два этапа.
На первом этапе рассматривается неопределенная задача, текст которой переводится на математический язык в виде неопределенного уравнения (функции), которое допускает много или бесконечно много решений.
На втором этапе по тем или иным признакам, которые заданы в явном или неявном виде, определяется, какое из решений задачи наиболее выгодно.
1. Ознакомимся с решением экстремальных задач по теме "Линейная функция". Решение этих задач сводится к нахождению экстремума линейной функции ^= к-х, •+• о , где ^ и о - постоянные. Если эту функцию рассматривать на сегменте L^) J3>.3 , то она будет иметь на нем наименьшее и наибольшее значения. При ^>о наименьшее значение у принимает
17
в точке л;= t/ , а наибольшее - в точке л'=/; при H^o функция У в точке Je-=<^ принимает наибольшее значение, а в точке л'=^ - наименьшее.
Задача. Расстояние между двумя шахтами А и б по шоссейной дороге 60 км. На шахте А добывается 200т руды в сутки, на шахте В - 100т в сутки. Где нужно построить завод по переработке руды, чтобы для ее перевозки количество тонно-километров было наименьшим?
Решение: Выясним, что суммарное количество тонно-километров изменяется в зависимости от места нахождения завода, вычислив его, например, для случаев, когда завод находится от пункта А на расстоянии 30 км, 20 км, 10 км. Далее приступаем к решению задачи, обозначив расстояние от завода С до шахты А через х:
А С ^ ж ; 6С= 60-х- Количество тонно-километров, пройденных транспортом от А до С за каждый день, составляет 200 ткм, а от В до С - 100*(60-JC) ткм. Суммарное количество (ткм) выразится функцией
f^^pOx.-^ {0£>( ео-зе.)-^ ^оОх. т- ёооо, д которая определена на сегменте L. О , 60.1.
ysssas-SL...^- ,,-..^<=--„—--„.™——-, Ясно, что это уравнение может иметь А (- ьи—^ в
бесконечно много решении.
Исследуя функцию У= -foOx + 6000 на сегменте Г о •j bo], получим:
^г^п, "s Gooo . Эта линейная функция будет иметь минимальное значение при ^ ^0, !/^„ = 6cw?TKM. Завод надо строить возле шахты А.
2. Решение задач по теме "Квадратичная функция" сводится к исследованию квадратного трехчлена, поэтому при их решении используются приемы выделения квадрата двучлена или свойствами квадратичной функции.
Задача. Предлагается сделать ограду для квадратного участка земли со стороной 20м или прямоугольного участка земли , основании которого на несколько метров больше, а высота на столько же метров меньше. Сравните площади, периметры квадрата и прямоугольника.
Решение: Поскольку сторона квадрата 20м, то Р =80м, s5 =400м2 Если бы одну сторону квадрата уменьшить на X метров, а другую увеличить на Х метров, то Р= -?• (20+ к)ч- 2 • (Ю~ У), S = ^00-х. -? -fc ^СЮ