Смекни!
smekni.com

К решению нелинейных вариационных задач (стр. 3 из 9)

С^ ^

J наиб. =400//при jc=o . Следовательно, наибольшую площадь из всех прямоугольников с одинаковыми периметрами имеет квадрат.


18

Достаточно много экстремальных задач можно решать при изучении темы "Квадратный трехчлен". К исследованию квадратичной функции на экстремум сводятся многие задачи экономики, физики, техники, алгебры.

Рассмотрим функцию, заданную формулой (/.^биг^юл. + с , где а., ё,с, - некоторые числа, причем о. ^ о , п. - переменная, п- е ^ Если -- ^/2а<:Д/, то при п.= -^/зл. данная функция принимает экстремальное значение. Если -%а> ^ и { /2а&bsol;^/^ то данная функция принимает одно и

• - •/ /<й ^ц ,/ fft ./

то же экстремальное значение дважды: при ^&bsol;-•=•~^72Q.i•/2 "• Л^~у2сг ~- /2 . Если - ^/2о, ^ &bsol; , то данная функция принимает наибольшее ( наименьшее) значение всегда при п. =. i .

В остальных случаях данная функция принимает экстремальное зна­чение при натуральном п, которое ближе расположено на числовой прямой к числу - &/^ .

Среди задач на оптимизацию есть задачи, которые могут быть ис­пользованы как на уроках алгебры, так и на уроках геометрии. Это объяс­няется тем, что с точки зрения^ содержания они геометрические (сформулированы в геометрических терминах), а по методу решения это задачи алгебры (они сводятся к определению экстремума функции мето­дом опорной функции).

Задача. Найти максимум произведения лу^ , если х- ^ .^ ^JL -^ { о. с> с.2'

Решение: Найдем максимум произведения -х— • -"— ' -fc— , т.к. зсл/i а2- У с.3 (J

у 22

максимально при тех же условиях, что и -•х . у -. z—. По уело -

а.-2- ^ eQ -

л5- у2 г2 ,

вию —— + -^- ^ —з- = < , тогда должно выполняться равенство:

Тг^- Ч^ ? ^ J£ У 2 ^

-a-s" :: g7- =~сТ или -а"^ '^^'с'^ уу . Т.к. сумма слагаемых постоянна, то их произведение будет наибольшим когда они равны. Тогда m-OLK (^г}^ л-8-е -- /Г о ее. Ответ: ^•^•^ о

m-CLX (^i) = j^^g <7 ' <э '


19

1.7. Понятия о задачах математического программирования

Математические модели реальных задач описываются уравнениями, системами уравнений или дифференциальными уравнениями. Но в школь­ном курсе изучаются еще неравенства и системы неравенств, а их прило­жения иллюстрирующих их применение для решения реальных задач от­сутствуют. Для заполнения этого пробела в первых изданиях учебника "Алгебра и начала анализа" содержался пункт "Понятие о линейном про­граммировании". Ниже приведем методику изложения трех основных за­дач линейного программирования для изучения в математических кружках в средней школе.

1.7 Л. Транспортная задача линейного программирования

1. Постановка задачи : Пусть на двух станциях ^4 и /&bsol;, сосредоточено

соответственно Ct, и 0.^ тонн груза, который необходимо доставить в пункты 6 , Ь-г., В,, в количестве I,, ^д , ^ , соответственно. Стоимость перевозки 1

тонны груза со станции у1, в пункты В,, Вд, &з составляет Сц , С^, G^ рублей

соответственно. Аналогично - стоимость перевозки со станции Л>в пункты В/, bj, б»з составляет G, , С^ ,Сщ рублей. Требуется организовать перевозку так,

чтобы общая стоимость этой перевозки была наименьшей. Все данные

представим в виде таблицы 1.

^^

/•"^

В/

fi.

^

Кол-во от­правленного

t ^^^

груза

е^

(^

(^

А,

^

^2

^3

й<

Сг/

С??

Сгз

А.

х„

^2

•Ггз

ft,

Кол-во до­ставленного

&<

^

^

груза

Таблица 1


20

Математическая модель задачи

Обозначим через -^-количество груза, перевозимого со станции aj в пункт 6^ . Тогда общая стоимость перевозки будет + При этом Jl^t .?. о и удовлетворяет условиям:

^ с/, х„ ^ е^ ^ ^... ^ ^з -г^ - и и е^; (<) ^ с^ ^/

'S ^ ^CU Г ^ ^ ^ ^ •2?<5 = Ог

^ т.ч. &bsol; ^-f-Xss. -f-^.^CLi . ^-- ^ &bsol; ^^Х,, =^ (2)

Л/2 + ^22 = Ьг

^ Зеез, ^ Д-^з = &

Итак: найти неотрицательное решение системы уравнений (2) дающее минимальное значение линейной формы (1).

Решение задачи (частный случай) Пусть 0{ -- 200, Лг. = /60 ^ ^ = f^O , & = 90, ^ = W,

Сн - б , С ^ = ^ С^ = 2 , С,, = S, С^ - J, ^з -= 2.

Для удобства обозначим -IV/ = » -^/'a :=t/ . Тогда из (2) и условия задачи получаем следующую систему неравенств:

Г X г0, У 7^0 , Х,л ^CL-( Х„ + Х^ ) = & - (^-+У) ^0 ' .У^^-ге^, Хаг ^&-^?^,

^2.^^^^/-^^)= ^2-^-&^ (^.^^>

В нашем случае оно примет вид:

' З^У.О^г.О Г О ^ эеf^ ^0

^у^2^ ^ ^^у^^ ^/;

^^^0,^^90 ] / JC^y^-У^ 1^^ ^^^У^^6?0

Тогда: -^ S^-h^^f-h 2- lsoo- (y^J -^S L W- X. J + + 3 ^^-^ + ^ L~ Юч- зе^З ш^ А зе^У + ^30 U f)

i Решение системы неравенств (2 ) будет выпуклое ограниченное

множество М. Рис. 1, а линейная форма т= х^У ^230 принимает при этом минимальное значение на стороне C^6J множества J4., т.е. на прямой

"я^^ЧО Здесь решение задачи есть множество точек отрезка пря­мой Г^З . Итак, мы можем взять любую точку на прямой х+-У= Ю . Возьмем, например, точку A (f0',o) , т.е. 'JC-^OC^ Ю, У^О . Тогда

а?/з = ^0 , Хц ^ f0 , Лгг ^ 90, Х^ъ =0.


21

При этих значениях таблица 1 - принимает вид:

^^ь.

,4;-^

В.

Вз

Кол-во от­правленного груза

А,

Ю

о

f30

^00

Аг

40

90

о

/60

Кол-во по­ставленного груза

1^0

90

/зо


При такой схеме перевозок затраты на них будут наименьшими и равны 1300.


22

1.7.2. Задача о рационе

1. Поставка задачи

Пусть известно, что животному ежедневно надо выдать о^ единиц жиров В/ , ш - углеводов Вг , V, - белков В^ . Для откорма живот­ных можно закупать 2 вида комбикормов. Единица веса первого корма dy содержит <2// единицы вещества K-f , d/г. единицы вещества В^ и <2/а единицы вещества 6э , а стоимость ее равна <?/ рубля. Для второго вида кормов данные соответственно равны 0^ , С^ц , <^гл и Сц . Требуется составить рацион, при котором была бы обеспечена суточная потребность вещества вг , при чем стоимость ее была бы наименьшей.

Все данные поместим в таблице 2.

Виды корма

Белки

Жиры

Углеводы

Стоимость 1-й единицы

I

ft/< 2

CLfz 3

^<з ^

^

II

^ /

CL^ tt

^ f

е.

6< 6

^3. f2

^ ^

Таблица 2

Математическая модель задачи

Пусть 1&bsol;- количество первого вида корма, х^ - количество второго вида корма, получаемого животным за сутки. Так как животное может по­лучить питательных веществ больше нормы ^ , то очевидно:

(Ц.^^^ , '^--f^.s.

с--Г

(3)


Общая стоимость кормов, затраченных на одно животное будет:

(4)

т= C&bsol;x^C^Xs =

i^ W Итак, математическая задача формируется следующим образом